Transmission electron energy loss spectra were obtained from small (approximately 100‐Å diam) regions of a series of single‐phase silicon‐containing specimens at 100‐keV incident beam energy, using a field emission source transmission electron microscope fitted with a magnetic sector spectrometer. The specimen foils were diamond cubic silicon, α‐silicon carbide, α‐silicon nitride, and amorphous silica. The SiL near‐edge structure depends markedly upon the chemical environment of the silicon. In this paper we show that the changes in near‐L‐edge structure, including threshold onset energy shift and edge profile, result from bond‐induced changes in the valence shell electronic structure of the specimen materials. Extended Hückel molecular orbital theory was used to calculate the valence shell electronic structure of five‐atom tetrahedral clusters, with silicon as the central atom and the other atoms noted above in corner positions. Inelastic electron scattering cross sections for silicon 2p and 2s core shell transitions to valence shell excited states were then calculated using the first Born approximation.

1.
R. W.
Carpenter
,
I.
Chan
,
H. L.
Tsai
,
C.
Varker
, and
L. J.
Demer
,
Mater. Res. Soc. Symp. Proc.
14
,
195
(
1983
).
2.
N. J.
Zaluzec
,
D. R.
Clarke
, and
R. W.
Carpenter
,
J. Am. Ceram. Soc.
64
,
601
(
1981
).
3.
Z.
Liliental
,
R. W.
Carpenter
,
D.
Fathy
, and
J. C.
Kelly
,
Mater. Res. Soc. Symp. Proc.
25
,
525
(
1984
).
4.
R. F.
Egerton
,
Ultramicroscopy
4
,
169
(
1979
).
5.
R. F. Egerton, in Proceedings of EMSA 39th Annual Meeting, edited by G. W. Bailey (Claitors, Baton Rouge, LA, 1981), p. 198.
6.
S. T.
Manson
,
Phys. Rev. A
6
,
1013
(
1972
).
7.
D. H. Madison and E. Merzbacher, in Atomic Inner‐Shell Processes, edited by B. Crasemann (Academic, New York, 1975), Vol. 1, Chap. 1.
8.
R. D.
Leapman
,
P.
Rez
, and
D. F.
Mayers
,
J. Chem. Phys.
72
,
1232
(
1980
).
9.
For example, R. D. Leapman, L. A. Grunes, P. L. Fejes, and J. Silcox, in EXAFS Spectroscopy: Techniques and Applications, edited by B. K. Teo and D. C. Joy (Plenum, New York, 1981), Chap. 18.
10.
T.
Shiraiwa
,
T.
Ishimura
, and
M.
Sawada
,
J. Phys. Soc. Jpn.
13
,
847
(
1958
).
11.
D. E. Sayers, F. W. Lytle, and E. A. Stern, in Advances in X‐Ray Analysis, edited by B. L. Henke, J. B. Newkirk, and G. R. Mallet (Plenum, New York, 1970), Vol. 13, p. 248.
12.
D. E.
Sayers
,
E. A.
Stern
, and
F. W.
Lytle
,
Phys. Rev. Lett.
27
,
1204
(
1971
).
13.
J. J.
Ritsko
,
S. E.
Schnatterly
, and
P. C.
Gibbons
,
Phys. Rev. Lett.
32
,
671
(
1974
).
14.
L. A.
Grunes
,
R. D.
Leapman
,
C. N.
Wilker
,
R.
Hoffman
, and
A. B.
Kunz
,
Phys. Rev. B
25
,
7157
(
1982
).
15.
F. D. Bloss, Crystallography and Crystal Chemistry (Holt, Rinehart, and Winston, New York, 1971), pp. 229–231.
16.
Powder Diffraction File (International Centre for Diffracton Data, Swarthmore, PA, 1980).
17.
R.
Gruen
,
Acta. Crystallog. Sect. B
35
,
800
(
1979
).
18.
H. A.
Bethe
,
Ann. Phys. (Leipzig)
5
,
325
(
1930
).
19.
N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, 3rd ed., edited by W. Marshall and D. H. Wilkinson (Clarendon, Oxford, 1965), pp. 481 and 498.
20.
M.
Inokuti
,
Rev. Mod. Phys.
43
,
297
(
1971
).
21.
S. H.
Lin
,
Proc. R. Soc. London Ser. A
335
,
51
(
1973
).
22.
R. F.
Egerton
,
Ultramicroscopy
10
,
297
(
1982
).
23.
P. M.
Kelly
,
A.
Jostsons
,
R. G.
Blake
, and
J. G.
Napier
,
Phys. Status Solidi A
31
,
771
(
1975
).
24.
R. F.
Egerton
,
Ultramicroscopy
3
,
243
(
1978
).
25.
D. C. Joy, R. F. Egerton, and D. M. Maher, in Scanning Electron Microscopy II (SEM Inc., AMF O’Hare, IL, 1979), p. 817.
26.
R. C. Weast, ed., Handbook of Chemistry and Physics, 51st ed. (The Chemical Rubber Co., Cleveland, OH, 1970).
27.
C.
Gähwiller
and
F. C.
Brown
,
Phys. Rev. B
2
,
1918
(
1970
).
28.
F. C.
Brown
,
R. Z.
Bachrach
, and
M.
Skibowski
,
Phys. Rev. B
15
,
4781
(
1977
).
29.
M.
Wolfsberg
and
L.
Helmholz
,
J. Chem. Phys.
20
,
837
(
1952
).
30.
H.
Basch
,
A.
Viste
, and
H. B.
Gray
,
Theoret. Chim. Acta
3
,
458
(
1965
).
31.
R.
Hoffmann
,
J. Chem. Phys.
39
,
1397
(
1963
).
32.
F. A. Cotton, Chemical Applications of Group Theory, 2nd ed. (Wiley, New York, 1971), pp. 370–375.
33.
J. C.
Slater
,
Phys. Rev.
36
,
57
(
1930
).
34.
E.
Clementi
and
D. L.
Raimondi
,
J. Chem. Phys.
38
,
2686
(
1963
).
35.
R. N.
Zare
,
J. Chem. Phys.
47
,
204
(
1967
).
36.
C. D.
Wagner
and
J. A.
Taylor
,
J. Electron Spectrosc. Relat. Phenom.
20
,
83
(
1980
).
37.
C. D.
Wagner
and
J. A.
Taylor
,
J. Electron Spectrosc. Relat. Phenom.
28
,
211
(
1982
).
38.
J. Callaway, Energy Band Theory (Academic, New York, 1964), p. 165.
39.
J. C.
Phillips
and
L.
Kleinman
,
Phys. Rev.
118
,
1153
(
1960
).
40.
C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976), p. 210.
41.
E.
Calabrese
and
W. B.
Fowler
,
Phys. Rev. B
18
,
2888
(
1978
).
This content is only available via PDF.
You do not currently have access to this content.