Various approximate methods for the calculation of vibrational second hyperpolarizabilities are assessed on the basis of results for CH4, NH3, H2O, HF, and CO2. Three specific variations of the perturbation‐theoretic approach are analyzed. These are defined by the types of terms retained in expansions which involve electrical and mechanical anharmonicities. The lowest‐order approximation being the double‐harmonic one and the next higher one the relaxation method. For the dynamic hyperpolarizabilities, the replacement of the optical frequencies (ω) by ω→∞ (the infinite‐frequency approximation) is also explored. On the evidence at hand it is concluded that the relaxation/infinite‐frequency method is a satisfactory approximation for the nonlinear optical vibrational hyperpolarizabilities.

1.
Special Issue on Molecular Nonlinear Optics, Int. J. Quantum Chem., edited by M. A. Ratner, Vol. 43 (1992).
2.
Optical Nonlinearities in Chemistry, Chem. Rev., edited by D. M. Burland, Vol. 94 (1994).
3.
Modern Nonlinear Optics, Adv. Chem. Phys., edited by M. Evand and S. Kielich, Vol. 85 (1993).
4.
D. M.
Bishop
,
Synth. Metal.
68
,
293
(
1995
).
5.
D. M.
Bishop
,
M.
Hasan
, and
B.
Kirtman
,
J. Chem. Phys.
103
,
4157
(
1995
).
6.
D. M.
Bishop
,
Rev. Mod. Phys.
62
,
343
(
1990
).
7.
D. M.
Bishop
,
Adv. Quantum Chem.
25
,
1
(
1994
).
8.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
95
,
2646
(
1991
).
9.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
97
,
5255
(
1992
).
10.
D. M.
Bishop
,
J.
Pipin
, and
S. M.
Cybulski
,
Phys. Rev. A
43
,
4845
(
1991
).
11.
D. S.
Elliott
and
J. F.
Ward
,
Mol. Phys.
51
,
45
(
1984
).
12.
D. P.
Shelton
,
J. Chem. Phys.
85
,
4234
(
1986
).
13.
D. P.
Shelton
,
Phys. Rev. A
34
,
304
(
1986
).
14.
Z.
Lu
and
D. P.
Shelton
,
J. Chem. Phys.
87
,
1967
(
1987
).
15.
D. P.
Shelton
and
L.
Ulivi
,
J. Chem. Phys.
89
,
149
(
1988
).
16.
M.
Del Zoppo
,
C.
Castiglioni
,
G.
Zerbi
,
M.
Rui
, and
M.
Gussoni
,
Synth. Metal.
51
,
135
(
1992
).
17.
B.
Kirtman
and
M.
Hasan
,
J. Chem. Phys.
96
,
470
(
1992
).
18.
G. P.
Das
,
A. T.
Yeates
, and
D.
Dudis
,
Chem. Phys. Lett.
212
,
671
(
1993
).
19.
C.
Castiglioni
,
M.
Gussoni
,
M.
Del Zoppo
, and
G.
Zerbi
,
Solid State Commun.
82
,
13
(
1992
).
20.
M.
Del Zoppo
,
C.
Castiglioni
,
M.
Veronelli
, and
G.
Zerbi
,
Synth. Metal.
55–57
,
3919
(
1993
).
21.
T. W. Rowlands, Ph.D. thesis, University of Cambridge, 1989.
22.
J.
Martí
and
D. M.
Bishop
,
J. Chem. Phys.
99
,
3860
(
1993
).
23.
D. M.
Bishop
,
B.
Kirtman
,
H. A.
Kurtz
, and
J. E.
Rice
,
J. Chem. Phys.
98
,
8024
(
1993
).
24.
D. M.
Bishop
,
J.
Pipin
, and
B.
Kirtman
,
J. Chem. Phys.
102
,
6778
(
1995
).
25.
D. M.
Bishop
and
J.
Pipin
,
J. Chem. Phys.
103
,
4980
(
1995
).
26.
M. J.
Cohen
,
A.
Willetts
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
100
,
4467
(
1994
).
27.
J.
Martí
,
J. L.
Andrés
,
J.
Bertrán
, and
M.
Duran
,
Mol. Phys.
80
,
625
(
1993
).
28.
J. L.
Andrés
,
J.
Bertrán
,
M.
Duran
, and
J.
Martí
,
J. Phys. Chem.
98
,
2803
(
1994
).
29.
J. L.
Andrés
,
J.
Bertrán
,
M.
Duran
, and
J.
Martí
,
Int. J. Quantum Chem.
52
,
9
(
1994
).
30.
H.
Sekino
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
3022
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.