We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

1.
Z.
Liu
,
X.
Zhang
,
Y.
Mao
,
Y. Y.
Zhu
,
Z.
Yang
,
C. T.
Chan
, and
P.
Sheng
,
Science
289
,
1734
(
2000
).
2.
K. M.
Ho
,
C. K.
Cheng
,
Z.
Yang
,
X. X.
Zhang
, and
P.
Sheng
,
Appl. Phys. Lett.
83
,
5566
(
2003
).
3.
T.
Matsuki
,
T.
Yamada
,
K.
Izui
, and
S.
Nishiwaki
,
Appl. Phys. Lett.
104
,
191905
(
2014
).
4.
Z.
Yang
,
J.
Mei
,
M.
Yang
,
N. H.
Chan
, and
P.
Sheng
,
Phys. Rev. Lett.
101
,
204301
(
2008
).
5.
Z.
Yang
,
H. M.
Dai
,
N. H.
Chan
,
G. C.
Ma
, and
P.
Sheng
,
Appl. Phys. Lett.
96
,
041906
(
2010
).
6.
Y.
Lai
,
Y.
Wu
,
P.
Sheng
, and
Z. Q.
Zhang
,
Nat. Mater.
10
,
620
(
2011
).
7.
J.
Mei
,
G.
Ma
,
M.
Yang
,
Z.
Yang
,
W.
Wen
, and
P.
Sheng
,
Nat. Commun.
3
,
756
(
2012
).
8.
M.
Yang
,
G.
Ma
,
Z.
Yang
, and
P.
Sheng
,
Phys. Rev. Lett.
110
,
134301
(
2013
).
9.
G.
Ma
,
M.
Yang
,
S.
Xiao
,
Z.
Yang
, and
P.
Sheng
,
Nat. Mater.
13
,
873
(
2014
).
10.
S.
Varanasi
,
J. S.
Bolton
,
T. H.
Siegmund
, and
R. J.
Cipra
,
Appl. Acoust.
74
,
485
(
2013
).
11.
Y.
Zhang
,
J.
Wen
,
Y.
Xiao
,
X.
Wen
, and
J.
Wang
,
Phys. Lett. A
376
,
1489
(
2012
).
12.
L.
Fan
,
Z.
Chen
,
S. Y.
Zhang
,
J.
Ding
,
X. J.
Li
, and
H.
Zhang
,
Appl. Phys. Lett.
106
,
151908
(
2015
).
13.
N.
Sui
,
X.
Yan
,
T. Y.
Huang
,
J.
Xu
,
F. G.
Yuan
, and
Y.
Jing
,
Appl. Phys. Lett.
106
,
171905
(
2015
).
14.
Y.
Chen
,
G.
Huang
,
X.
Zhou
,
G.
Hu
, and
C. T.
Sun
,
J. Acoust. Soc. Am.
136
,
969
(
2014
).
15.
Y.
Chen
,
G.
Huang
,
X.
Zhou
,
G.
Hu
, and
C. T.
Sun
,
J. Acoust. Soc. Am.
136
,
2926
(
2014
).
16.
F.
Langfeldt
,
W.
Gleine
, and
O.
van Estorff
,
J. Sound Vib.
349
,
315
(
2015
).
17.
X.
Chen
,
X.
Xu
,
S.
Ai
,
H.
Chen
,
Y.
Pei
, and
X.
Zhou
,
Appl. Phys. Lett.
105
,
071913
(
2014
).
18.
S.
Xiao
,
G.
Ma
,
Y.
Li
,
Z.
Yang
, and
P.
Sheng
,
Appl. Phys. Lett.
106
,
091904
(
2015
).
19.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
, and
S.
Nutt
,
J. Appl. Phys.
110
,
124903
(
2011
).
20.
Y.
Zhang
,
J.
Wen
,
H.
Zhao
,
D.
Yu
,
L.
Cai
, and
X.
Wen
,
J. Appl. Phys.
114
,
063515
(
2013
).
21.
C. J.
Naify
,
C. M.
Chang
,
G.
McKnight
, and
S. R.
Nutt
,
J. Acoust. Soc. Am.
132
,
2784
(
2012
).
22.
Y. F.
Wang
,
Y. S.
Wang
, and
V.
Laude
,
Phys. Rev. B
92
,
104110
(
2015
).
23.
F.
Fahy
and
P.
Gardonio
,
Sound and Structural Vibration: Radiation, Transmission and Response
, 2nd ed. (
Academic Press
,
Oxford
,
2007
), p.
281
.
You do not currently have access to this content.