The bifurcation structure is presented for an axisymmetric swirling flow in a constricted pipe, using the pipe geometry of Beran and Culick [J. Fluid Mech. 242, 491 (1992)]. The flow considered has been restricted to a two‐dimensional parameter space comprising the Reynolds number Re and the relative swirl V0 of the incoming swirling flow. The bifurcation diagram is constructed by solving the time‐dependent axisymmetric Navier–Stokes equations. The stability of the steady results presented by Beran and Culick, obtained from a steady axisymmetric Navier–Stokes code, has been confirmed. Further, the steady solution branch has also been extended to much larger V0 values. At larger V0, a stable unsteady solution branch has been identified. This unsteady branch coexists with the previously found stable steady solution branch and originates via a turning point bifurcation. The bifurcation diagram is of the type described by Benjamin [Proc. R. Soc. London Ser. A 359, 1 (1978)] as the canonical unfolding of a pitchfork bifurcation. This type of bifurcation structure in the two‐dimensional parameter space (Re,V0), suggests the possibility of hysteresis behavior over some part of parameter space, and this is observed in the present study. The implications of this on the theoretical description of vortex breakdown and the search for a criterion for its onset are discussed.

1.
J. M.
Lopez
and
A. D.
Perry
, “
Axisymmetric vortex breakdown. Part 3. Onset of periodic flow and chaotic advection
,”
J. Fluid Mech.
234
,
449
(
1992
).
2.
N.
Tsitverblit
, “
Vortex breakdown in a cylindrical container in the light of continuation of a steady solution
,”
Fluid Dyn. Res.
11
,
19
(
1993
).
3.
J.-H. Chen, W. G. Pritchard, and S. J. Tavener, “Bifurcation for flow past a cylinder between parallel planes,” J. Fluid Mech. (in press).
4.
H. B. Squire, “Analysis of the ’vortex breakdown’ phenomenon. Part 1,”, Imperial College, Aeronautical Department Report No. 102, 1960.
5.
T. B.
Benjamin
, “
Theory of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
593
(
1962
).
6.
T. B.
Benjamin
, “
Some developments in the theory of vortex breakdown
,”
J. Fluid Mech.
28
,
65
(
1967
).
7.
G. L.
Brown
and
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 2. Physical mechanisms
,”
J. Fluid Mech.
221
,
553
(
1990
).
8.
S. L.
Bragg
and
W. R.
Hawthorne
, “
Some exact solutions of the flow through annular cascade actuator discs
,”
J. Aeronaut. Sci.
17
,
243
(
1950
).
9.
R. R.
Long
, “
Steady motion around axisymmetric obstacle moving along the axis of a rotating liquid
,”
J. Meteorol.
10
,
197
(
1953
).
10.
S.
Leibovich
and
A.
Kribus
, “
Large-amplitude wavetrains and solitary waves in vortices
,”
J. Fluid Mech.
216
,
459
(
1990
).
11.
P. S.
Beran
and
F. E. C.
Culick
, “
The role of non-uniqueness in the development of vortex breakdown in tubes
,”
J. Fluid Mech.
242
,
491
(
1992
).
12.
J. M. Lopez, “Note on the nature of the onset of periodic flow in an enclosed cylinder with a rotating endwall,” submitted to J. Fluid Mech., also available as Perm State Applied Mathematics, Report No. AM131, 1994.
13.
T. B.
Benjamin
, “
Bifurcation phenomena in steady flows of a viscous fluid. I. Theory
,”
Proc. R. Soc. London Ser. A
359
,
1
(
1978
).
14.
R. M.
Kopecky
and
K. E.
Torrance
, “
Initiation and structure of eddies in a rotating stream
,”
Comput. Fluids
1
,
289
(
1973
).
15.
W. J.
Grabowski
and
S. A.
Berger
, “
Solutions of the Navier-Stokes equations for vortex breakdown
,”
J. Fluid Mech.
75
,
525
(
1976
).
16.
E. Krause, X.-G. Shi, and P. M. Hartwich, “Computation of leading edge vortices,” AIAA 6th Computational Fluid Dynamics Conference (AIAA, Washington, DC, 1983), CP834.
17.
X.-G. Shi, “Numerical simulation of vortex breakdown,” in Colloquium on Vortex Breakdown, Sonderforschungsbereich 25, “Wirblestromungen in der flugtechnik” (RWTH, Aachen, 1985), pp. 69–80.
18.
T.
Sarpkaya
, “
Vortex breakdown in swirling conical flows
,”
AIAA J.
9
,
1792
(
1971
).
19.
T.
Sarpkaya
, “
On stationary and travelling vortex breakdowns
,”
J. Fluid Mech.
45
,
545
(
1971
).
20.
J. H.
Faler
and
S.
Leibovich
, “
An experimental map of the internal structure of a vortex breakdown
,”
J. Fluid Mech.
86
,
313
(
1978
).
21.
A. K.
Garg
and
S.
Leibovich
Spectral characteristics of vortex breakdown flow-fields
,”
Phys. Fluids
22
,
2053
(
1979
).
22.
J. K.
Harvey
, “
Some observations of the vortex breakdown phenomenon
,”
J. Fluid Mech.
14
,
585
(
1962
).
23.
M. P.
Escudier
,
J. B.
Bornstein
, and
N.
Zehnder
, “
Observations and LDA measurements of confined vortex flow
,”
J. Fluid Mech.
98
,
49
(
1980
).
24.
S.
Leibovich
, “
Vortex stability and breakdown: Survey and extension
,”
AIAA J.
22
,
1192
(
1984
).
25.
T.
Sarpkaya
, “
Effect of the adverse pressure gradient on vortex breakdown
,”
AIAA J.
12
,
602
(
1974
).
26.
P. A.
Davidson
, “
The interaction between swirling and recirculating velocity components in unsteady, inviscid flow
,”
J. Fluid Mech.
209
,
35
(
1989
).
27.
D. L. Darmofal, “A study of the axisymmetric vortex breakdown,” Ph.D. thesis, Massachusetts Institute of Technology, 1993.
28.
M. P. Escudier and J. J. Keller, “Vortex breakdown: A two-stage transition,” in AGARD, CP-342, 1983.
29.
J. J.
Keller
,
W.
Egli
, and
J.
Exley
, “
Force- and loss-free transitions between flow states
,”
Z. Angew. Math. Phys.
36
,
854
(
1985
).
30.
R.
Legendre
, “
Remarks on axisymmetric vortex breakdown
,”
Rech. Aérosp.
5
,
1
(
1981
).
31.
M. P. Escudier, “Vortex breakdown and the criterion for its occurrence,” in Intense Atmospheric Vortices, edited by L. Bengtsson and J. Lighthill (Springer-Verlag, New York, 1982), pp. 247–258.
32.
M. P.
Escudier
, “
Vortex breakdown: Observations and explanations
,”
Prog. Aerosp. Sci.
25
,
189
(
1988
).
33.
M. H.
Hall
, “
Vortex breakdown
,”
Annu. Rev. Fluid Mech.
4
,
195
(
1972
).
34.
R. E.
Spall
,
T. B.
Gatski
, and
C. E.
Grosch
, “
A criterion for vortex breakdown
,”
Phys. Fluids
30
,
3434
(
1987
).
35.
J. M.
Lopez
, “
Axisymmetric vortex breakdown. Part 1. Confined swirling flow
,”
J. Fluid Mech.
221
,
533
(
1990
).
36.
R. A.
Sweet
, “
A generalized cyclic reduction algorithm
,”
SIAM J. Num. Anal.
10
,
506
(
1974
).
37.
M. J.
Miller
and
R. P.
Pearce
, “
A three-dimensional primitive equation model of cumulonimbus convection
,”
Q. J. R. Meteorol. Soc.
100
,
133
(
1974
).
38.
E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen, LAPACK User’s Guide (SIAM, Philadelphia, PA, 1992).
This content is only available via PDF.
You do not currently have access to this content.