Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Is all salinity the same? I. The effect of ionic compositions on the salinity tolerance of five species of freshwater invertebrates

Liliana Zalizniak A , Ben J. Kefford A B and Dayanthi Nugegoda A
+ Author Affiliations
- Author Affiliations

A Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, PO Box 71, Bundoora 3083, VIC, Australia.

B Corresponding author. Email: ben.kefford@rmit.edu.au

Marine and Freshwater Research 57(1) 75-82 https://doi.org/10.1071/MF05103
Submitted: 25 May 2005  Accepted: 3 November 2005   Published: 17 January 2006

Abstract

Salts of marine origin, predominantly consisting of Na+ and Cl ions, are dominant in most Australian inland saline waters. The proportions of other ions, Ca2+, Mg2+, SO42–, HCO3 and CO32–, in the water may influence salinity tolerance of freshwater organisms and thus the effect of increasing salinity may vary with difference in ionic proportions. We exposed freshwater invertebrates to different concentrations of four ionic compositions and compared them with commercial sea salt (Ocean Nature). They were: synthetic Ocean Nature (ONS) and three saline water types (ONS but without: SO42–, HCO3 and CO32– (S1); Ca2+, HCO3 and CO32– (S2); and Ca2+ and Mg2+ (S3)), which are considered to be the predominant saline water types in south-eastern Australia and the Western Australian wheatbelt. The 96-h LC50 values for the five media were determined for six invertebrate species and sub-lethal responses were observed for two species. There were no differences between responses of invertebrates to various ionic compositions in acute toxicity tests. However, in prolonged sub-lethal tests, animals reacted differently to the various ionic compositions. The greatest effect was observed in water types lacking Ca, for which plausible physiological mechanisms exist. Variation in ionic proportions should be taken into account when considering sub-lethal effects of salinity on freshwater invertebrates.


Acknowledgments

We are grateful for funding from Land and Water Australia (LWA) and the Murray–Darling Basin Commission, under the National Rivers Contaminants Program (LWA Project no. RMI 12), and the Queensland Department of Natural Resources and Mines. We thank Satish Choy, Brendan Edgar, Richard Marchant, Leon Metzeling, Daryl Nielsen, Carolyn Palmer and Phil Papas for their assistance to the project by being members of a steering committee. We also thank Victor Zalizniak for assistance in calculation of ionic proportions of the media.


References

Agresti A. (1990). ‘Categorical Data Analysis.’ (John Wiley & Sons: New York.)

Alsop, D. H. , and Wood, C. M. (1999). Influence of waterborne cations on zinc uptake and toxicity in rainbow trout, Oncorhynchus mykiss. Canadian Journal of Fisheries and Aquatic Sciences 56(11), 2112–2119.
Crossref | GoogleScholarGoogle Scholar | Bayly I. A. E., and Williams W. D. (1973). ‘Inland Waters and Their Ecology.’ (Longman: Melbourne.)

Berezina N. A. (2003). Tolerance of freshwater invertebrates to changes in water salinity. Russian Journal of Ecology 34, 261–266.

Chapman, P. M. , Bailey, H. , and Canaria, E. (2000). Toxicity of total dissolved solids associated with two mine effluents to chironomid larvae and early life stages of rainbow trout. Environmental Toxicology and Chemistry 19(1), 210–214.
Crossref | GoogleScholarGoogle Scholar | Drever J. J. (1982). ‘The Geochemistry of Natural Waters.’ 2nd edn. (Prentice-Hall Inc.: Englewood Cliffs, NJ.)

Elendt, B.-P. , and Bias, W.-R. (1990). Trace nutrient deficiency in Daphnia magna cultured in standard medium for toxicity testing. Effects of the optimization of culture conditions on life history parameters of D. magna. Water Research 24(9), 1157–1167.
Crossref | GoogleScholarGoogle Scholar |

Gitter, A. H. , Oliver, D. , and Thurm, U. (1994). Calcium- and voltage-dependence of nematocyst discharge in Hydra vulgaris. Journal of Comparative Physiology. A. Sensory, Neural, and Behavioral Physiology 175, 115–122.


Goetsch, P. A. , and Palmer, C. G. (1997). Salinity tolerance of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Archives of Environmental Contamination and Toxicology 32, 32–41.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Heijerick, D. G. , De Schamphelaere, K. A. C. , and Janssen, C. R. (2002). Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model. Environmental Toxicology and Chemistry 21(6), 1309–1315.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Jackson, B. P. , Lasier, P. J. , Miller, W. P. , and Winger, P. W. (2000). Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca. Bulletin of Environmental Contamination and Toxicology 64, 279–286.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kawaii, S. , Yamashita, K. , Nakai, M. , Takahashi, M. , and Fusetani, N. (1999). Calcium dependence of settlement and nematocyst discharge in actinulae of the hydroid Tubularia mesembryanthemum. The Biological Bulletin 196(1), 45–51.


Kefford, B. J. , and Nugegoda, D. (2005). No evidence for a critical salinity threshold for growth and reproduction in the freshwater snail Physa acuta. Environmental Pollution (Barking, Essex: 1987) 134, 377–383.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kefford, B. J. , Papas, P. J. , and Nugegoda, D. (2003). Relative salinity tolerance of macroinvertebrates from the Barwon River, Victoria, Australia. Marine and Freshwater Research 54, 755–765.
Crossref | GoogleScholarGoogle Scholar |

Kefford, B. J. , Palmer, C. G. , Pakhomova, L. , and Nugegoda, D. (2004a). Comparing test systems to measure the salinity tolerance of freshwater invertebrates. Water S.A. 30(4), 499–506.


Kefford, B. J. , Papas, P. J. , Metzeling, L. , and Nugegoda, D. (2004b). Do laboratory salinity tolerances of freshwater animals correspond with their field salinity? Environmental Pollution 129, 355–362.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kefford, B. J. , Palmer, C. G. , and Nugegoda, D. (2005a). Relative salinity tolerance of freshwater macroinvertebrates from the south-east Eastern Cape, South Africa compared with the Barwon Catchment, Victoria, Australia. Marine and Freshwater Research 56, 163–171.
Crossref | GoogleScholarGoogle Scholar |

Kefford, B. J. , Palmer, C. G. , Jooste, S. , Warne, M. St. J. , and Nugegoda, D. (2005b). What is it meant by ‘95% of species’? An argument for the inclusion of rapid tolerance testing. Human and Ecological Risk Assessment 11, 1025–1046.
Crossref | GoogleScholarGoogle Scholar |

Laurent, M. , and Fleury, A. (1995). A model with excitability and relay properties for the generation and the propagation of a Ca2+ morphogenetic wave in Paramecium. Journal of Theoretical Biology 174(2), 227–236.
Crossref | GoogleScholarGoogle Scholar |

Lozina-Lozinsky, L. K. (1931). Ernahrungsphysiologie der infusorien. Archiv fur Protistenkunde 74, 18–120.


McKay, M. C. , and Anderson, P. A. V. (1988). Preparation and properties of cnidocytes from the sea anemone Anthopleura elegantissima. The Biological Bulletin 174, 47–53.


Marshall, N. A. , and Bailey, P. C. E. (2004). Impact of secondary salinisation on freshwater ecosystems: effects of contrasting, experimental, short-term releases of saline wastewater on macroinvertebrates in a lowland stream. Marine and Freshwater Research 55, 509–523.
Crossref | GoogleScholarGoogle Scholar |

Mount, D. R. , Gulley, D. D. , Hockett, J. R. , Garrison, T. D. , and Evans, J. M. (1997). Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (flathead minnows). Environmental Toxicology and Chemistry 16, 2009–2019.
Crossref | GoogleScholarGoogle Scholar |

Nakaoka, Y. , and Ooi, H. (1985). Regulation of ciliary reversal in triton-extracted Paramecium by calcium and cyclic adenosine monophosphate. Journal of Cell Science 77(1), 185–195.
PubMed |

Nielsen, D. L. , Brock, M. , Crossle, K. , Harris, K. , Healey, M. , and Jarosinski, I. (2003). The effects of salinity on aquatic plant germination and zooplankton hatching from two wetlands sediments. Freshwater Biology 48, 2214–2223.
Crossref | GoogleScholarGoogle Scholar |

Pagenkopf, G. K. (1983). Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environmental Science & Technology 17, 342–347.
Crossref | GoogleScholarGoogle Scholar |

Palmer, C. G. , Muller, W. J. , Gordon, A. K. , Scherman, P.-A. , Davies-Coleman, H. , Pakhomova, L. , and de Kock, E. (2004). The development of a toxicity database using freshwater macroinvertebrates, and its application to the protection of South African water resources. South African Journal of Science 100, 643–650.


Pinder, A. M. , Halse, S. A. , McRae, J. M. , and Shiel, R. J. (2005). Occurrence of aquatic invertebrates of the wheatbelt region of Western Australia in relation to salinity. Hydrobiologia 543, 1–24.
Crossref | GoogleScholarGoogle Scholar |

Pollino, C. A. , and Holdway, D. A. (1999). Potential of two hydra species as standard toxicity test animals. Ecotoxicology and Environmental Safety 43, 309–316.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Penttinen, S. , Kostamo, A. , and Kukkonen, J. V. K. (1998). Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna. Environmental Toxicology and Chemistry 17(12), 2498–2503.
Crossref | GoogleScholarGoogle Scholar |

Preston, R. R. , and Hammond, J. A. (1998). Long-term adaptation of Ca2+-dependent behaviour in Paramecium tetraurelia. The Journal of Experimental Biology 201, 1835–1846.
PubMed |

Preston, R. R. , Saimi, Y. , and Kung, C. (1992). Calcium-dependent inactivation of the calcium current activated upon hyperpolarization of Paramecium tetraurelia. The Journal of General Physiology 100, 253–268.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Radke, L. C. , Howard, K. W. F. , and Gell, P. A. (2002). Chemical diversity in south-eastern Australian saline lakes I: geochemical causes. Marine and Freshwater Research 53, 941–959.
Crossref | GoogleScholarGoogle Scholar |

Radke, L. C. , Juggins, S. , Halse, S. A. , De Deckker, P. , and Finston, T. (2003). Chemical diversity in south-eastern Australian saline lakes II: biotic implications. Marine and Freshwater Research 54, 895–912.
Crossref | GoogleScholarGoogle Scholar |

Salleo, A. , La Spada, G. , and Barbera, R. (1994a). Gadolinium is a powerful blocker of the activation of nematocytes of Pelagia noctiluca. The Journal of Experimental Biology 187, 201–206.
PubMed |

Salleo, A. , La Spada, G. , Drago, M. , and Curcio, G. (1994b). Hyposmotic shock-induced discharge in acontia of Caliactis parasitica is blocked by gadolinium. Experientia 50, 148–152.
Crossref | GoogleScholarGoogle Scholar |

Santoro, G. , and Salleo, A. (1991). The discharge of in situ nematocysts of the acontia of Aiptasia mutabilis is a Ca2+-induced response. The Journal of Experimental Biology 156, 173–185.


Sazonova, V. E. , Zaliznyak, L. A. , Savel’eva, L. M. , Morozova, E. V. , and Kostyuk, O. B. (1997). Use of bioassays to develop monitoring of water ecosystem. Russian Journal of Ecology 28(3), 207–212.


Schamphelaere, K. A. C. , and Janssen, C. R. (2002). A biotic ligand model predicting acute copper toxicity for Daphnia magna: The effects of calcium, magnesium, sodium, potassium, and pH. Environmental Science & Technology 36, 48–54.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Stubblefield, W. A. , Brinkman, S. F. , Davies, P. H. , Garrison, T. D. , Hockett, J. R. , and McIntyre, M. W. (1997). Effects of water hardness on the toxicity of manganese to developing brown trout (Salmo trutta). Environmental Toxicology and Chemistry 16(10), 2082–2089.
Crossref | GoogleScholarGoogle Scholar |

Williams, W. D. (1987). Salinization of rivers and streams: an important environmental hazard. Ambio 16(4), 180–185.


Welsh, P. G. , Lipton, J. , Chapman, G. A. , and Podrabsky, T. L. (2000). Relative importance of calcium and magnesium in hardness-based modification of copper toxicity. Environmental Toxicology and Chemistry 19(6), 1624–1631.
Crossref | GoogleScholarGoogle Scholar |

Yanagita, T. M. (1973). The ‘cnidoblast’ as an excitable system. Publications of the Seto Marine Biological Laboratory. Shirahama 20, 675–693.


Zeretzke, S. , Perez, F. , Velden, K. , and Berking, S. (2002). Ca2+-ions and pattern control in Hydra. The International Journal of Developmental Biology 46(5), 705–771.
PubMed |