GLYCOBIOLOGY AND EXTRACELLULAR MATRICES
The Fibronectin-binding MSCRAMM FnbpA ofStaphylococcus aureus Is a Bifunctional Protein That Also Binds to Fibrinogen*

https://doi.org/10.1074/jbc.275.18.13863Get rights and content
Under a Creative Commons license
open access

Staphylococcus aureus is an important pathogen capable of causing a wide spectrum of diseases in humans and animals. This bacterium expresses a variety of virulence factors that participate in the process of infection. These include MSCRAMMs (microbial surface componentsrecognizing adhesive matrixmolecules) that mediate the adherence of the bacteria to host extracellular matrix components, such as collagen, fibronectin (Fn), and fibrinogen (Fg). Two Fn-binding MSCRAMMs, FnbpA and FnbpB, have been previously identified. The Fn binding activity has been localized to the ∼40-amino acid residue D repeats in the C-terminal part of these proteins. However, no biological activity has yet been attributed to the N-terminal A regions of these proteins. These regions exhibit substantial amino acid sequence identity to the A regions of other staphylococcal MSCRAMMs, including ClfA, ClfB, and SdrG (Fbe), all of which bind Fg. This raises the question of whether the Fn-binding MSCRAMMs can also bind specifically to Fg. In this report, we show that a recombinant form of the A region of FnbpA does specifically recognize Fg. We localize the binding site in Fg for recombinant FnbpA to the γ-chain, in particular to the C-terminal residues of this polypeptide, the site also recognized by ClfA. In addition, we demonstrate that recombinant FnbpA can compete with ClfA for binding to both immobilized and soluble Fg. By the use of surface plasmon resonance spectroscopy and fluorescence polarization, we determine the dissociation equilibrium constant for the interaction of recombinant FnbpA with intact immobilized Fg and with a synthetic C-terminal γ-chain peptide, respectively. Finally, by overexpressing FnbpA in a mutant strain of S. aureus that lacks the expression of both ClfA and ClfB, we show that native FnbpA can mediate the interaction of S. aureus with soluble Fg.

Cited by (0)

*

This work was supported by National Institutes of Health Grant AI20624 (to M. H.).The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.