Journal of Biological Chemistry
Volume 277, Issue 3, 18 January 2002, Pages 2073-2080
Journal home page for Journal of Biological Chemistry

MECHANISMS OF SIGNAL TRANSDUCTION
Apicidin, a Histone Deacetylase Inhibitor, Induces Apoptosis and Fas/Fas Ligand Expression in Human Acute Promyelocytic Leukemia Cells*

https://doi.org/10.1074/jbc.M106699200Get rights and content
Under a Creative Commons license
open access

We previously reported that apicidin arrested human cancer cell growth through selective induction of p21WAF1/Cip1. In this study, the apoptotic potential of apicidin and its mechanism in HL60 cells was investigated. Treatment of HL60 cells with apicidin caused a decrease in viable cell number in a dose-dependent manner and an increase in DNA fragmentation, nuclear morphological change, and apoptotic body formation, concomitant with progressive accumulation of hyperacetylated histone H4. In addition, apicidin converted the procaspase-3 form to catalytically active effector protease, resulting in subsequent cleavages of poly(ADP-ribose) polymerase and p21WAF1/Cip1. Incubation of HL60 cells with z-DEVD-fmk, a caspase-3 inhibitor, almost completely abrogated apicidin-induced activation of caspase-3, DNA fragmentation, and cleavages of poly(ADP-ribose) polymerase and p21WAF1/Cip1. Moreover, these effects were preceded by an increase in translocation of Bax into the mitochondria, resulting in the release of cytochrome c and cleavage of procaspase-9. The addition of cycloheximide greatly inhibited activation of caspase-3 by apicidin by interfering with cleavage of procaspase-3 and DNA fragmentation, suggesting that apicidin-induced apoptosis was dependent on de novo protein synthesis. Consistent with these results, apicidin transiently increased the expressions of both Fas and Fas ligand. Preincubation with NOK-1 monoclonal antibody, which prevents the Fas-Fas ligand interaction and is inhibitory to Fas signaling, interfered with apicidin-induced translocation of Bax, cytochrome c release, cleavage of procaspase-3, and DNA fragmentation. Taken together, the results suggest that apicidin might induce apoptosis through selective induction of Fas/Fas ligand, resulting in the release of cytochrome c from the mitochondria to the cytosol and subsequent activation of caspase-9 and caspase-3.

Cited by (0)

Published, JBC Papers in Press, November 6, 2001, DOI 10.1074/jbc.M106699200

*

This work was supported by Kyonggi Pharmaceutical Research Center, Republic of Korea, Grant KPRC-99-KA-1-3.The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.