Skip to main content
Log in

Mechanical suppression of essential tremor

  • Original Article
  • Scientific Papers
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

This paper describes a new treatment for essential tremor. A wearable orthosis, which can be adapted to each configuration of each joint of the upper limb, is able to apply effective dynamic force between consecutive segments of the upper limb and change its biomechanical characteristics. The orthosis is controlled by a computer with a dedicated software application that distinguishes between real time tremor and voluntary movement. The wearable orthosis is able to detect position, rate and acceleration of rotation of the joint by means of a chip gyroscope. This technology was evaluated in six patients suffering from essential tremor. The technique is non invasive and represents an alternative to medication and deep brain stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Findley LJ, Koller WC. Definitions and behavioral classifications. In: Findley LJ, Koller WC, editors. Handbook of tremor disorders. Marcel Dekker, New York, 1995, pp 1–5.

    Google Scholar 

  2. Louis ED, Honig LS, Vonsattel JP, Maraganore DM, Borden S, Moskowitz CB. Essential tremor associated with focal nonnigral Lewy bodies: A clinicopathologic study. Arch Neurol. 2005;62:1004–07.

    Article  PubMed  Google Scholar 

  3. Benito-Leon J, Bermejo-Pareja F, Morales JM, Vega S, Molina JA. Prevalence of essential tremor in three elderly populations of central Spain. Mov Disord. 2003;128:389–94.

    Article  Google Scholar 

  4. Louis ED. Behavioral symptoms associated with essential tremor. Adv Neurol. 2005;96:284–90.

    PubMed  Google Scholar 

  5. Hua SE, Lenz FA. Posture-related oscillations in human cerebellar thalamus in essential tremor are enabled by voluntary motor circuits. J Neurophysiol. 2005;93:117–27.

    Article  PubMed  Google Scholar 

  6. Manzoni D. The cerebellum may implement the appropriate coupling of sensory inputs and motor responses: Evidence from vestibular physiology. Cerebellum. 2005;4:178–88.

    Article  PubMed  CAS  Google Scholar 

  7. Gibson AR, Horn KM, Pong M. Activation of climbing fibers. Cerebellum. 2004;3:212–21.

    Article  PubMed  Google Scholar 

  8. Glickstein M, Waller J, Baizer JS, Brown B, Timmann D. Cerebellum lesion and finger use. Cerebellum. 2005;4: 189–97.

    Article  PubMed  Google Scholar 

  9. Manto MU. The wide spectrum of spinocerebellar ataxias. Cerebellum. 2005;4:2–6.

    Article  PubMed  CAS  Google Scholar 

  10. Klebe S, Stolze H, Grensing K, Volkmann J, Wenzelburger R, Deuschl G. Influence of alcohol on gait in patients with essential tremor. Neurology. 2005;65:96–101.

    Article  PubMed  CAS  Google Scholar 

  11. Pagan FL, Butman JA, Dambrosia JM, Hallett M. Evaluation of essential tremor with multi-voxel magnetic resonance spectroscopy. Neurology. 2003;60:1344–7.

    PubMed  Google Scholar 

  12. Manto M, Laute MA, Pandolfo M. Depression of extracellular GABA and increase of NMDA-induced nitric oxide following acute intra-nuclear administration of alcohol in the cerebellar nuclei of the rat. Cerebellum. 2005;4:230–8.

    Article  PubMed  CAS  Google Scholar 

  13. Ushe M, Mink JW, Revilla FJ, Wernle A, Schneider Gibson P, McGee-Minnich L, Hong M, Rich KM, Lyons KE, Pahwa R, Perlmutter JS. Effect of stimulation frequency on tremor suppression in essential tremor. Mov Disord. 2004;19:1163–8.

    Article  PubMed  Google Scholar 

  14. Binder DK, Rau G, Starr PA. Hemorrhagic complications of microelectrode-guided deep brain stimulation. Stereotact Funct Neurosurg. 2003;80:28–31.

    Article  PubMed  Google Scholar 

  15. Burkhard PR, Vingerhoets FJ, Berney A, Bogousslavsky J, Villemure JG, Ghika J. Suicide after successful deep brain stimulation for movement disorders. Neurology. 2004;63:2170–2.

    PubMed  CAS  Google Scholar 

  16. Adelstein B. Peripheral mechanical loading and the mechanism of abnormal intention tremor. PhD dissertation, MIT, 1981.

  17. Riviere CN. Adaptive suppression of tremor for improved human-machine control. PhD dissertation, Johns Hopkins University, 1981.

  18. Michaelis J. Introducing the neater eater. Action Res. 1988;6:2–3.

    Google Scholar 

  19. Hendriks J. A second-generation joystick for people disable by tremor. In: Proceedings of the 14th Annual RESNA Conference. Elmsford: NY, Ed, RESNA Press, 1991. pp 248–51.

    Google Scholar 

  20. Rosen MJ, Arnold AS, Baiges IJ, Aisen ML, Eglowstein SR. Design of a controlled-energy dissipation orthosis (cedo) for functional suppression of intention tremors. J Rehabil Res Dev. 1995;32:1–16.

    PubMed  CAS  Google Scholar 

  21. Kotovsky J, Rosen MJ. A wearable tremor suppression orthosis. J Rehabil Res Dev. 1998;35:4.

    Google Scholar 

  22. Manto M, Rocon E, Pons J, Davies A, Williams J, Belda-Lois JM, Normie L. An active orthosis to control upper limb tremor: The Drifts Project (Dynamically Responsive Intervention For Tremor Suppression). EURO-ATAXIA Newsletter. 26 November 2006, 2–6.

  23. Rocon E, Ruiz AF, Pons JL, Belda-Lois JM, SanchezLacuesta JJ. Rehabilitation robotics: A wearable exo-skeleton for tremor assessment and suppression. In: ICRA05. 2005 International Conference on Robotics and Automation.

  24. Struppler A, Erbel F, Velho F. An overview on the pathophysiology of parkinsonian and other pathological tremors. In: Desmedt JE, editor. Physiological tremor, pathological tremors and clonus. Progress in Clinical Neurophysiology. 1978;5:114–28.

    Google Scholar 

  25. Belda-Lois JM, Vivas MJ, Castillo A, Peydro F, Garrido JD, Sanchez-Lacuesta J, Barberá R, Poveda R, Prat J. Functional assessment of tremor in the upper-limb. In: Proceedings of the 8th Congress of European Federation for Research in Rehabilitation, Ljubljana, Slovenia, 2004.

  26. Perlmutter JS, Mink JW. Deep brain stimulation. Annu Rev Neurosci. 2006;29:229–57.

    Article  PubMed  CAS  Google Scholar 

  27. Chen H, Hua SE, Smith MA, Lenz FA, Shadmehr R. Effects of human cerebellar thalamus disruption on adaptative control of reaching. Cereb Cortex. 2005;15.

  28. Obayashi S. Possible mechanism for transfer of motor skill learning: Implication of the cerebellum. Cerebellum. 2004;3:204–11.

    Article  PubMed  Google Scholar 

  29. Nowak DA, Hermsdorfer J, Rost K, Timmann D, Topka H. Predictive and reactive finger force control during catching in cerebellar degeneration. Cerebellum. 2004;3:227–35.

    Article  PubMed  Google Scholar 

  30. Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. J Neurosci. 2005;25:9919–31.

    Article  PubMed  CAS  Google Scholar 

  31. Kawato M, Wolpert D. Internal models for motor control. Novartis Found Symp. 1998;218:291–304.

    Article  PubMed  CAS  Google Scholar 

  32. Lin DC, Rymer WZ. Damping actions of the neuromuscular system with inertial loads: Soleus muscle of the decerebrate cat. J Neurophysiol. 2000;83:652–8.

    PubMed  CAS  Google Scholar 

  33. Fahn S, Tolosa E, Marin C. Clinical rating scale for tremor. In: Tolosa E, Jankovic J, editors. Parkinson’s disease and movement disorders. Baltimore: Urban & Schwarzenberg, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Rocon PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocon, E., Manto, M., Pons, J. et al. Mechanical suppression of essential tremor. Cerebellum 6, 73–78 (2007). https://doi.org/10.1080/14734220601103037

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220601103037

Key words

Navigation