Skip to main content
Log in

Cerebellar encoding of limb position

  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

In this paper, we review single and multijoint studies that, over the years, have provided insight on the cerebellar encoding of limb spatial position. In particular, we present support to the idea that the cerebellum integrates signals from multiple sources to encode global limb parameters. Then, we highlight the result of recent studies that analyzed quantitatively the relationships between limb endpoint position and cerebellar activity. These findings suggest that the cerebellum may share with other central sensorymotor structures an anisotropic representation of limb position characterized by a strong bias along the anteroposterior axis. Finally, we speculate that this anisotropy may also subtend an internal representation of limb mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holmes G. The cerebellum of man. Brain 1939; 62: 1–30.

    Article  Google Scholar 

  2. Eccles JC, Ito M, Szentagothai J. The Cerebellum as a Neuronal Machine. Berlin,: Springer-Verlag, 1967.

    Google Scholar 

  3. Keele SW, Ivry RB. Does the cerebellum provide a common computation of diverse tasks: a timing hypothesis. In: Diamond A. editor. Developmental and neural basis of higher cognitive function. New York,: Annals of the New York Academy of science, 1991: 179–211.

    Google Scholar 

  4. Kawato M. Internal models for motor control and trajectory planning. Curr Opin Neurobiol 1999; 9: 718–727.

    Article  PubMed  CAS  Google Scholar 

  5. Lang CE, Bastian AJ. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching. J Neurophysiol 1999; 82: 2108–2119.

    PubMed  CAS  Google Scholar 

  6. Wolpert DM, Miall RC, Kawato M. Internal models in the cerebellum. Trends Cogn Sci 1998; 9: 338–347.

    Article  Google Scholar 

  7. Schweighofer N, Arbib MA, Kawato M. Role of the cerebellum in reaching movements in humans. I. Distributed inverse dynamics control. Eur J Neurosci 1998; 10: 86–94.

    Article  PubMed  CAS  Google Scholar 

  8. Schweighofer N, Spoelstra J, Arbib MA, Kawato M. Role of the cerebellum in reaching movements in humans. II. A neural model of the intermediate cerebellum. Eur J Neurosci 1998; 10: 95–105.

    Article  PubMed  CAS  Google Scholar 

  9. Nixon PD. The role of the cerebellum in preparing responses to predictable sensory events. Cerebellum 2003; 2: 114–122.

    Article  PubMed  Google Scholar 

  10. Miall RC, Reckess GZ. The cerebellum and the timing of coordinated eye and hand tracking. Brain Cogn 2002; 48: 212–226.

    Article  PubMed  CAS  Google Scholar 

  11. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Prog Brain Res 2003; 142: 171–188.

    Article  PubMed  Google Scholar 

  12. Blakemore SJ, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport 2001; 12: 1879–1884.

    Article  PubMed  CAS  Google Scholar 

  13. Blakemore SJ, Wolpert DM, Frith CD. Central cancellation of selfproduced tickle sensation. Nat Neurosci 1998; 1: 635–640.

    Article  PubMed  CAS  Google Scholar 

  14. Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT. Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 1996; 272: 545–547.

    Article  PubMed  CAS  Google Scholar 

  15. Casabona A, Valle MS, Bosco G, Garifoli A, Lombardo SA, Perciavalle V. Anisotropic representation of forelimb position in the cerebellar cortex and nucleus interpositus of the rat. Brain Res 2003; 972: 127–136.

    Article  PubMed  CAS  Google Scholar 

  16. Ebner TJ. A role for the cerebellum in the control of limb movement velocity. Curr Opin Neurobiol 1998; 8: 762–769.

    Article  PubMed  CAS  Google Scholar 

  17. Valle MS, Bosco G, Poppele RE. Information processing in the spinocerebellar system. Neuroreport 2000; 11: 4075–4079.

    Article  PubMed  CAS  Google Scholar 

  18. Fortier PA, Kalaska JF, Smith AM. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J Neurophysiol 1989; 62: 198–211.

    PubMed  CAS  Google Scholar 

  19. Giaquinta G, Valle MS, Caserta C, Casabona A, Bosco G, Perciavalle V. Sensory representation of passive movement kinematics by rat’s spinocerebellar Purkinje cells. Neurosci Lett 2000; 5: 41–44.

    Article  Google Scholar 

  20. Arshavsky YI, Berkinblit MB, Fukson OI, Gelfand IM, Orlovsky GN. Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Res 1972; 43: 276–279.

    Article  PubMed  CAS  Google Scholar 

  21. Lundberg A. Function of the ventral spinocerebellar tract. A new hypothesis. Exp Brain Res 1971; 12: 317–330.

    PubMed  CAS  Google Scholar 

  22. Thach WT. Somatosensory receptive fields of single units in cat cerebellar cortex. J Neurophysiol 1967; 30: 675–696.

    PubMed  Google Scholar 

  23. Shambes GM, Beermann DH, Welker W. Multiple tactile areas in cerebellar cortex: another patchy cutaneous projection to granule cell columns in rats. Brain Res 1978; 157: 123–128.

    Article  PubMed  CAS  Google Scholar 

  24. Rubia FJ, Kolb FP. Responses of cerebellar units to a passive movement in the decerebrate cat. Exp Brain Res 1978; 31: 387–401.

    Article  PubMed  CAS  Google Scholar 

  25. Bauswein E, Kolb FP, Rubia FJ. Cerebellar feedback signals of a passive hand movement in the awake monkey. Pflugers Arch 1984; 402: 292–299.

    Article  PubMed  CAS  Google Scholar 

  26. Kolb FP, Rubia FJ, Bauswein E. Cerebellar unit responses of the mossy fibre system to passive movements in the decerebrate cat. I. Responses to static parameters. Exp Brain Res 1987; 68: 234–248.

    PubMed  CAS  Google Scholar 

  27. van Kan PL, Gibson AR, Houk JC. Movement-related inputs to intermediate cerebellum of the monkey. J Neurophysiol 1993; 69: 74–94.

    PubMed  Google Scholar 

  28. van Kan PL, Houk JC, Gibson AR. Output organization of intermediate cerebellum of the monkey. J Neurophysiol 1993; 69: 57–73.

    PubMed  Google Scholar 

  29. Marple-Horvat DE, Stein JF. Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. J Physiol 1987; 394: 351–366.

    PubMed  CAS  Google Scholar 

  30. Thach WT. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. I. Nuclear cell output. J. Neurophysiol 1970; 33: 527–536.

    PubMed  CAS  Google Scholar 

  31. Thach TW. Discharge of cerebellar neurons related to two maintained postures and two prompt movements. II. Purkinje cell output and input. J Neurophysiol 1970; 33: 537–547.

    PubMed  CAS  Google Scholar 

  32. Tarnecki R, Konorski J. Patterned responses of Purkinje cells in cats to passive displacements of limbs, squeezing and touching. Acta Neurobiol Exp 1970; 30: 95–119.

    CAS  Google Scholar 

  33. Konorski J, Tarnecki R. Purkinje cells in the cerebellum: their responses to postural stimuli in cats. Proc Natl Acad Sci 1970; 65: 892–897.

    Article  PubMed  CAS  Google Scholar 

  34. Armstrong DM, Cogdell B, Harvey RJ. Firing patterns of Purkinje cells in the cat cerebellum for different maintained positions of the limbs. Brain Res 1973; 50: 452–456.

    Article  PubMed  CAS  Google Scholar 

  35. Bastian AJ. Cerebellar limb ataxia: abnormal control of selfgenerated and external forces. AnnN Y Acad Sci 2002; 978: 16–27.

    Article  Google Scholar 

  36. Goodkin HP, Keating JG, Martin TA, Thach WT. Preserved simple and impaired compound movement after infarction in the territory of the superior cerebellar artery. Can J Neurol Sci 1993; 20 Suppl 3: S93–104.

    PubMed  Google Scholar 

  37. Fu QG, Flament D, Coltz JD, Ebner TJ. Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 1997; 78: 478–491.

    PubMed  CAS  Google Scholar 

  38. Fortier PA, Smith AM, Kalaska JF. Comparison of cerebellar and motor cortex activity during reaching: directional tuning and response variability. J Neurophysiol 1993; 69: 1136–1149.

    PubMed  CAS  Google Scholar 

  39. Giaquinta G, Casabona A, Valle MS, Bosco G, Perciavalle V. Spinocerebellar Purkinje cells and rat forelimb postures: a direction-dependent activity. Neurosci Lett 1998; 245: 81–84.

    Article  PubMed  CAS  Google Scholar 

  40. Bosco G, Giaquinta G, Valle MS, Caserta C, Casabona A, Perciavalle V. Distribution of spinocerebellar Purkinje cell responses to passive forelimb movements in the rat. Eur J Neurosci 2000; 12: 4063–4073.

    Article  PubMed  CAS  Google Scholar 

  41. Coltz JD, Johnson MT, Ebner TJ. Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. J Neurosci 1999; 19: 1782–1803.

    PubMed  CAS  Google Scholar 

  42. Johnson MT, Ebner TJ. Processing of multiple kinematic signals in the cerebellum and motor cortices. Brain Res Rev 2000; 33: 155–168.

    Article  PubMed  CAS  Google Scholar 

  43. Bosco G, Rankin A, Poppele RE. Representation of passive hindlimb postures in cat spinocerebellar activity. J Neurophysiol 1996; 76: 715–726.

    PubMed  CAS  Google Scholar 

  44. Giaquinta G, Casabona A, Valle MS, Bosco G, Perciavalle V. On the relation of rat’s external cuneate activity to global parameters of forelimb posture. Neuroreport 1999; 10: 3075–3080.

    Article  PubMed  CAS  Google Scholar 

  45. Liu X, Robertson E, Miall RC. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex. J Neurophysiol 2003; 89: 1223–1237.

    Article  PubMed  Google Scholar 

  46. Kettner RE, Schwartz AB, Georgopoulos AP. Primate motor cortex and free arm movements to visual targets in threedimensional space. III. Positional gradients and population coding of movement direction from various movement origins. J Neurosci 1988; 8: 2938–2947.

    PubMed  CAS  Google Scholar 

  47. Bosco G, Poppele RE. Representation of multiple kinematic parameters of the cat hindlimb in spinocerebellar activity. J Neurophysiol 1997; 78: 1421–1432.

    PubMed  CAS  Google Scholar 

  48. Tillery SI, Soechting JF, Ebner TJ. Somatosensory cortical activity in relation to arm posture: nonuniform spatial tuning. J Neurophysiol 1996; 76: 2423–2438.

    PubMed  CAS  Google Scholar 

  49. Prud’homme MJ, Kalaska JF. Proprioceptive activity in primate primary somatosensory cortex during active arm reaching movements. J Neurophysiol 1994; 72: 2280–2301.

    PubMed  CAS  Google Scholar 

  50. Sergio LE, Kalaska JF. Systematic changes in motor cortex cell activity with arm posture during directional isometric force generation. J Neurophysiol 2003; 89: 212–228.

    Article  PubMed  Google Scholar 

  51. Caminiti R, Johnson PB, Urbano A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J Neurosci 1990; 10: 2039–2058.

    PubMed  CAS  Google Scholar 

  52. Ajemian R, Bullock D, Grossberg S. A model of movement coordinates in the motor cortex: posture-dependent changes in the gain and direction of single cell tuning curves. Cereb Cortex 2001; 11: 1124–1135.

    Article  PubMed  CAS  Google Scholar 

  53. Vindras P, Desmurget M, Prablanc C, Viviani P. Pointing errors reflect biases in the perception of the initial hand position. J Neurophysiol 1998; 79: 3290–3294.

    PubMed  CAS  Google Scholar 

  54. Hwang EJ, Donchin O, Smith MA, Shadmehr R. A gain-field encoding of limb position and velocity in the internal model of arm dynamics. PLoS Biol 2003; 1: 209–220.

    Article  CAS  Google Scholar 

  55. Mussa-Ivaldi FA, Hogan N, Bizzi E. Neural, mechanical, and geometric factors subserving arm posture in humans. J Neurosci 1985; 5: 2732–2743.

    PubMed  CAS  Google Scholar 

  56. Flash T, Mussa-Ivaldi F. Human arm stiffness characteristics during the maintenance of posture. Exp Brain Res 1990; 82: 315–326.

    Article  PubMed  CAS  Google Scholar 

  57. Burdet E, Osu R, Franklin DW, Milner TE, Kawato M. The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 2001; 414: 446–449.

    Article  PubMed  CAS  Google Scholar 

  58. Flanagan JR, Lolley S. The inertial anisotropy of the arm is accurately predicted during movement planning. J Neurosci 2001; 21: 1361–1369.

    PubMed  CAS  Google Scholar 

  59. McKay WA, Murphy JT. Cerebellar modulation of reflex gain. Prog Neurobiol 1979; 13: 361–417.

    Article  Google Scholar 

  60. Shimansky Y, Wang JJ, Bauer RA, Bracha V, Bloedel JR. On-line compensation for perturbations of a reaching movement is cerebellar dependent: support for the task dependency hypothesis. Exp Brain Res 2004; 155: 156–172.

    Article  PubMed  Google Scholar 

  61. Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M. Cerebellar plasticity and the ocular following response. AnnN Y Acad Sci 2002; 978: 439–454.

    Article  Google Scholar 

  62. Lang CE, Bastian AJ. Cerebellar damage impairs automaticity of a recently practiced movement. J Neurophysiol 2002; 87: 1336–1347.

    PubMed  Google Scholar 

  63. van Beers RJ, Sittig AC, Denier van der Gon JJ. The precision of proprioceptive position sense. Exp Brain Res 1998; 122: 367–377.

    Article  PubMed  Google Scholar 

  64. Iwaniuk AN, Whishaw IQ. On the origin of skilled forelimb movements. Trends Neurosci 2000; 23: 372–376.

    Article  PubMed  CAS  Google Scholar 

  65. Whishaw IQ. Did a change in sensory control of skilled movements stimulate the evolution of the primate frontal cortex? Behav Brain Res 2003; 146: 31–41.

    Article  PubMed  Google Scholar 

  66. Graziano MS, Cooke DF, Taylor CS, Moore T. Distribution of hand location in monkeys during spontaneous behavior. Exp Brain Res 2004; 155: 30–36.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Casabona Phd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casabona, A., Valle, M.S., Bosco, G. et al. Cerebellar encoding of limb position. Cerebellum 3, 172–177 (2004). https://doi.org/10.1080/14734220410016735

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220410016735

Keywords

Navigation