Skip to main content
Log in

Cerebellum and the deciphering of motor coding

  • Editorial
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum is a key-actor in motor control. Attempting to extract the motor codes underlying the organization of movement and the rules of signal processing applied by the cerebellar modules has been and remains a major goal for many researchers worldwide. There is an impressive body of evidence showing that the cerebellar pathways influence basic aspects of movement control including: anticipation, timing of motor commands, sensorimotor synchronization, sensorimotor associations and tuning of the magnitudes of muscle activities. The cerebellum contains more neurons than any other part of the brain and is considered as an extremely powerful machine for deciphering information. In this issue, we have gathered scientists working on the field of motor control to provide an overview of recent advances in our understanding of the contribution of this remarkable circuitry in the elaboration and shaping of motor commands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7:511–22.

    Article  PubMed  CAS  Google Scholar 

  2. Allen GI, Tsukahara N. Cerebrocerebellar communication systems. Physiol Rev. 1974;54:957–1006.

    PubMed  CAS  Google Scholar 

  3. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23:8432–44.

    PubMed  CAS  Google Scholar 

  4. Wolpert DM, Miall RC. Forward physiological motor control. Neural Net. 1996;9:1265–79.

    Article  Google Scholar 

  5. Pasalar S, Roitman AV, Durfee WK, Ebner TJ. Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci. 2006;9:1404–11.

    Article  PubMed  CAS  Google Scholar 

  6. Shidara M, Kawano K, Gomi H, Kawato M. Inversedynamics model eye movement control by Purkinje cells in the cerebellum. Nature. 1993;365(6441):50–52.

    Article  PubMed  CAS  Google Scholar 

  7. Yarom Y, Cohen D. The olivocerebellar system as a generator of temporal patterns. Ann NY Acad Sci. 2002;978:122–34.

    Article  PubMed  CAS  Google Scholar 

  8. Ivry RB, Keele SW, Diener HC. Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res. 1988;73:167–80.

    Article  PubMed  CAS  Google Scholar 

  9. Timmann D, Watts S, Hore J. Failure of cerebellar patients to time finger opening precisely causes ball high-low inaccuracy in overarm throws. J Neurophysiol. 1999;82:103–14.

    PubMed  CAS  Google Scholar 

  10. Ivry RB, Spencer RM. The neural representation of time. Curr Opin Neurobiol. 2004;14:225–32.

    Article  PubMed  CAS  Google Scholar 

  11. Keating JG, Thach WT. Nonclock behavior of inferior olive neurons: interspike interval of Purkinje cell complex spike discharge in the awake behaving monkey is random. J Neurophysiol. 1995;73:1329–40.

    PubMed  CAS  Google Scholar 

  12. Keating JG, Thach WT. No clock signal in the discharge of neurons in the deep cerebellar nuclei. J Neurophysiol. 1997;77:2232–4.

    PubMed  CAS  Google Scholar 

  13. Christian KM, Thompson RF. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem. 2003;11:427–55.

    Article  Google Scholar 

  14. De Zeeuw CI, Yeo CH. Time and tide in cerebellar memory formation. Curr Opin Neurobiol. 2005;15:667–74.

    Article  PubMed  CAS  Google Scholar 

  15. McCormick DA, Clark GA, Lavond DG, Thompson RF. Initial localization of the memory trace for a basic form of learning. Proc Natl Acad Sci USA. 1982;79:2731–5.

    Article  PubMed  CAS  Google Scholar 

  16. Hirano T. Motor control mechanism by the cerebellum. Cerebellum. 2006;5:296–300.

    Article  PubMed  Google Scholar 

  17. Silveri MC, Di Betta AM, Filippini V, Leggio MG, Molinari M. Verbal short-term store-rehearsal system and the cerebellum: evidence from a patient with a right cerebellar lesion. Brain. 1998;121:2175–87.

    Article  PubMed  Google Scholar 

  18. Manto M. The wide spectrum of spinocerebellar ataxias. Cerebellum. 2005;4:2–6.

    Article  PubMed  CAS  Google Scholar 

  19. Simantov R, Snyder SH, Oster-Granite ML. Harmalineinduced tremor in the rat: abolition by 3-acetylpyridine destruction of cerebellar climbing fibers. Brain Res. 1976;114:144–51.

    Article  PubMed  CAS  Google Scholar 

  20. Kralic JE, Criswell HE, Osterman JL, O’Buckley TK, Wilkie ME, Matthews DB, Hamre K, Breese GR, Homanics GE, Morrow AL. Genetic essential tremor in gamma-aminobutyric acid A receptor alpha 1 subunit knockout mice. J Clin Invest. 2005;1 15:774–9.

    Google Scholar 

  21. Horak FB, Diener HC. Cerebellar control of postural scaling and central set in stance. J Neurophysiol. 1994;72:479–93.

    PubMed  CAS  Google Scholar 

  22. Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to vertebrates. Annu Rev Neurosci. 1985;8:233–61.

    Article  PubMed  CAS  Google Scholar 

  23. Koch G, Oliveri M, Torriero S, Salerno S, Gerfo EL, Caltagirone C. Repetitive TMS of cerebellum intereferes with millisecond time processing. Exp Brain Res. 2006.

  24. Schutter DJLG, Van Honk J. The cerebellum on the rise of human emotion. Cerebellum. 2005;4:290–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Manto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manto, M., Bastian, A.J. Cerebellum and the deciphering of motor coding. Cerebellum 6, 3–6 (2007). https://doi.org/10.1080/14734220701234690

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1080/14734220701234690

Key words

Navigation