Brought to you by:

The mechanism of electroforming of metal oxide memristive switches

, , , , , and

Published 5 May 2009 IOP Publishing Ltd
, , Citation J Joshua Yang et al 2009 Nanotechnology 20 215201 DOI 10.1088/0957-4484/20/21/215201

This article is corrected by 2010 Nanotechnology 21 339803

0957-4484/20/21/215201

Abstract

Metal and semiconductor oxides are ubiquitous electronic materials. Normally insulating, oxides can change behavior under high electric fields—through 'electroforming' or 'breakdown'—critically affecting CMOS (complementary metal–oxide–semiconductor) logic, DRAM (dynamic random access memory) and flash memory, and tunnel barrier oxides. An initial irreversible electroforming process has been invariably required for obtaining metal oxide resistance switches, which may open urgently needed new avenues for advanced computer memory and logic circuits including ultra-dense non-volatile random access memory (NVRAM) and adaptive neuromorphic logic circuits. This electrical switching arises from the coupled motion of electrons and ions within the oxide material, as one of the first recognized examples of a memristor (memory–resistor) device, the fourth fundamental passive circuit element originally predicted in 1971 by Chua. A lack of device repeatability has limited technological implementation of oxide switches, however. Here we explain the nature of the oxide electroforming as an electro-reduction and vacancy creation process caused by high electric fields and enhanced by electrical Joule heating with direct experimental evidence. Oxygen vacancies are created and drift towards the cathode, forming localized conducting channels in the oxide. Simultaneously, O2− ions drift towards the anode where they evolve O2 gas, causing physical deformation of the junction. The problematic gas eruption and physical deformation are mitigated by shrinking to the nanoscale and controlling the electroforming voltage polarity. Better yet, electroforming problems can be largely eliminated by engineering the device structure to remove 'bulk' oxide effects in favor of interface-controlled electronic switching.

Export citation and abstract BibTeX RIS

Please wait… references are loading.