Brought to you by:
The following article is Open access

Spectral structure and decompositions of optical states, and their applications

, and

Published 12 April 2007 Published under licence by IOP Publishing Ltd
, , Citation Peter P Rohde et al 2007 New J. Phys. 9 91 DOI 10.1088/1367-2630/9/4/091

1367-2630/9/4/91

Abstract

We discuss the spectral structure and decomposition of multi-photon states. Ordinarily 'multi-photon states' and 'Fock states' are regarded as synonymous. However, when the spectral degrees of freedom are included this is not the case, and the class of 'multi-photon' states is much broader than the class of 'Fock' states. We discuss the criteria for a state to be considered a Fock state. We then address the decomposition of general multi-photon states into bases of orthogonal eigenmodes, building on existing multi-mode theory, and introduce an occupation number representation that provides an elegant description of such states. This representation allows us to work in bases imposed by experimental constraints, simplifying calculations in many situations. Finally we apply this technique to several example situations, which are highly relevant for state of the art experiments. These include Hong–Ou–Mandel interference, spectral filtering, finite bandwidth photo-detection, homodyne detection and the conditional preparation of Schrödinger kitten and Fock states. Our techniques allow for very simple descriptions of each of these examples.

Export citation and abstract BibTeX RIS

Please wait… references are loading.