Paper The following article is Open access

Powerful ultraviolet laser pulse impact on polished metals and semiconductors

, , , , , and

Published under licence by IOP Publishing Ltd
, , Citation Yu V Khomich et al 2020 J. Phys.: Conf. Ser. 1697 012254 DOI 10.1088/1742-6596/1697/1/012254

1742-6596/1697/1/012254

Abstract

Laser treatment for samples of copper, its alloys and gold was carried out with a UV pulse of nanosecond duration. After irradiation at subthreshold values of the energy density (E ∼ 0.2 - 0.8 J/cm2) the noticeable changes in the surface layer were revealed. These are traces of thermoplastic deformation resulting from laser exposure. They appear as uneven rise of the irradiated sample surface area up to 1 μm. The effect is cumulative, because the height of the uplifts increases with increasing number of impact pulses. In addition, the characteristic features of high-temperature plastic deformation were observed in the form of crystallographic slip and grain-boundary slippage. At E ∼ 1 J/cm2 or more the optical breakdown occurred with the formation of a crater on the metal surface, that precludes the detection of described effects. The mechanical impulse of a laser plasma, when exposed to a metal surface, prevents the thermomechanical expansion of the material, and therefore, similar effects have not been previously observed. On the surface of materials with a significantly larger elastic limit (single crystals of germanium and silicon, a tungsten carbide) this phenomenon was not observed, because the generated thermomechanical stresses were insufficient to create conditions of plastic deformation.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.
10.1088/1742-6596/1697/1/012254