Paper The following article is Open access

Autoencoder based Wear Assessment in Sheet Metal Forming

, , and

Published under licence by IOP Publishing Ltd
, , Citation Philipp Niemietz et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1157 012082 DOI 10.1088/1757-899X/1157/1/012082

1757-899X/1157/1/012082

Abstract

The amount of information contained in process signals such as acoustic emission and force signals has proven vital for the detection of changes in physical conditions or quality feature prediction in sheet metal forming applications. Both signal types have also been researched in the context of wear detection, yet systems that reliably identify the wear state at a given time in sheet metal forming processes based on these signals do not exist. This paper proposes an architecture to assess the wear increase within a given time frame in an experiment based on an autoencoder. The ability of autoencoders to encode and decode signals has been widely studied and this approach leverages the fact that autoencoders are more likely to learn representative encodings on stable and homogeneous signals than on heterogeneous signals with high fluctuations. This approach utilizes the circumstance that high tool wear leads to changes in the signal and signal fluctuation. In consequence, autoencoders can be utilized to track tool wear progression without the need for labelled data. The findings show a strong similarity to physical models for the wear progression of tool components, indicating the validity of this approach. Additionally, an analysis of the signals yields characteristic effects of the considered force signals that could specifically represent wear resistance.

Export citation and abstract BibTeX RIS

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Please wait… references are loading.