Raman microspectroscopy analysis of pressure-induced metallization in scratching of silicon

, , and

Published under licence by IOP Publishing Ltd
, , Citation Yury Gogotsi et al 2001 Semicond. Sci. Technol. 16 345 DOI 10.1088/0268-1242/16/5/311

0268-1242/16/5/345

Abstract

A single-point diamond turning machine was used to make grooves on (111) p-type single-crystal silicon wafers at room temperature. Scratch tests have been performed with both sharp (Vickers and conical) diamond tools, and a spherical (Rockwell) diamond tool. Our results showed that material removal mechanisms differed between these tools. Pressure-induced metallization of Si allows the ductile regime mechanical micromachining of wafer surfaces. Raman microspectroscopy and electron microscopy were used to determine the machining parameters that do not introduce cracking or other types of damage. The surface of the groove, after machining, was covered by a mixture of metastable, high-pressure silicon phases and amorphous silicon. Further, these phases can be transformed into cubic silicon by annealing. The maximum depth of cut in the ductile regime has been determined for the given scratch test conditions and tools. The developed technique can be used to machine Ge, GaAs and other semiconductors. Applications drawing from this research are many. For example, channels for microfluidic devices can be engraved with a channel cross-section that is determined by the shape of the tool, which allows patterns that cannot be produced using etching. There are no limitations on the channel length or direction, and the channel width can vary from potentially a few nanometres to several micrometres.

Export citation and abstract BibTeX RIS

Please wait… references are loading.