Electro-mechanical impedance modeling of active material systems

, and

Published under licence by IOP Publishing Ltd
, , Citation Chen Liang et al 1996 Smart Mater. Struct. 5 171 DOI 10.1088/0964-1726/5/2/006

0964-1726/5/2/171

Abstract

An active material system may be generalized as an electro-mechanical network because of the incorporation of actuators (electrically driven) and sensors (that convert mechanical energy into electrical energy). An investigation of the coupled electrical and mechanical aspects of an active material system will help reveal some of its most important characteristics, in particular regarding energy conversion and consumption issues.

The research performed in the area of the electro-mechanical impedance (EMI) modeling of active material systems is herein summarized. In this paper, a generic EMI model to describe the electro-mechanical network behavior (time domain and frequency domain) of active material systems will be discussed. The focus of the discussion will be on the methodology and basic components of the EMI modeling technique and its application to assist in the design of efficient active control structures. This paper will first introduce the basic concept of the EMI modeling and its general utility in the area of active material systems. The methodology of the EMI modeling technique will be illustrated using an example of PZT actuator-driven mechanical systems. The basic components of the EMI modeling, including the electro-mechanics of induced strain actuators, the dynamic analysis of active material systems, and the electrical power consumption and requirements, will be discussed. Finally, some applications of the EMI modeling approach, including the determination of the optimal actuator locations, modal analysis using collocated PZT actuator - sensors, and the prediction of radiated acoustic power, will be presented.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1088/0964-1726/5/2/006