1887

Abstract

A strain of anaerobic, syntrophic, propionate-oxidizing bacteria, strain LYP(= OCM 661; T = type strain), was isolated and proposed as representative a new genus and new species, gen. nov., sp. nov. The strain was enriched from an anaerobic digestor and isolated. Initial isolation was as a monoxenic propionate-degrading co-culture containing JF-1as an H- and formate-using partner. Later, an axenic culture was obtained by using crotonate as the catabolic substrate. The previously described propionate-degrading syntrophs of the genus also grow in co-culture with methanogens such as , forming acetate, CO and methane from propionate. However, differs by producing less methane and more acetate; in addition, it forms small amounts of butyrate. and grew within similar ranges of pH, temperature and salinity, but they differed significantly in substrate ranges and catabolic products. Unlike grew axenically on crotonate, although very slowly. Co-cultures of grew on propionat and grew slowly on crotonate or butyrate. and grow on propionate plus sulfate, whereas did not. Comparisons of 16S rDNA genes indicated that is most closely related to , and is more distantly related to

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/00207713-49-2-545
1999-04-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/49/2/ijs-49-2-545.html?itemId=/content/journal/ijsem/10.1099/00207713-49-2-545&mimeType=html&fmt=ahah

References

  1. Amann R. I., Stromley J., Devereux R., Key R., Stahl D. A. 1992; Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl Environ Microbiol 58:614–623
    [Google Scholar]
  2. Blaylock B. A., Stadtman T. C. 1966; Methane biosynthesis by Methanosarcina barker i properties of the soluble enzyme system. Arch Biochem Biophys 116:138–158
    [Google Scholar]
  3. Boone D. R. 1982; Terminal reactions in the anaerobic digestion of animal waste. Appl Environ Microbiol 43:57–64
    [Google Scholar]
  4. Boone D. R. 1984; Propionate exchange reactions in methano-genic ecosystems. Appl Environ Microbiol 48:863–864
    [Google Scholar]
  5. Boone D. R., Bryant M. P. 1980; Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov., from methanogenic ecosystems. Appl Environ Microbiol 40:626–632
    [Google Scholar]
  6. Boone D. R., Johnson R. L., Liu Y. 1989; Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741
    [Google Scholar]
  7. Brosius J., Palmer M. L., Kennedy P. J., Noller H. R. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Nat I Acad Sci USA 75:4801–4805
    [Google Scholar]
  8. Caccavo F. Jr, Lonergan D. J., Lovley D. R., Davis M., Stolz J. F., Mclnerney M. J. 1994; Geobacter sulfurreducens sp. nov., a hydrogen- and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60:3752–3759
    [Google Scholar]
  9. Devereux R., Delaney M., Widdel F., Stahl D. A. 1989; Natural relationships among sulfate-reducing eubacteria. J Bacteriol 171:6689–6695
    [Google Scholar]
  10. Doetsch R. N. 1981; Determinative methods of light micro-scopy. In Manual of Methods for General Bacteriology21–33 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips. G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Evers S., Weizenegger M., Ludwig W., Schink B., Schleifer K. H. 1993; The phylogenetic positions of Pelobacter acetylenicus and Pelobacter propionicus. Syst Appl Microbiol 16:216–218
    [Google Scholar]
  12. Felsenstein J. 1993 phylip Phylogeny Inference Package; Seattle, WA, USA:
  13. Fitch W. M., Margoliash E. 1967 Construction of phylogenetic trees 155:279–284
    [Google Scholar]
  14. Harmsen H. J. M., Wullings B., Akkermans A. D. L., Ludwig W., Stams A. J. M. 1993; Phylogenetic analysis of Syntrophobacter wolinii reveals a relationship with sulfate-reducing bacteria. Arch Microbiol 160:238–240
    [Google Scholar]
  15. Harmsen H. J. M., Kengen H. M. P., Akkermans A. D. L., Stams A. J. M. 1995; Phylogenetic analysis of two syntrophic propionate-oxidizing bacteria in enrichments cultures. Syst Appl Microbiol 18:67–73
    [Google Scholar]
  16. Houwen F. P., Dijkema C., Schoenmakers C. H. H., Stams A. J. M., Zehnder A. J. B. 1987; 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274
    [Google Scholar]
  17. Houwen F. P., Plokker J., Stams A. J. M., Zehnder A. J. B. 1990; Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55
    [Google Scholar]
  18. Houwen F. P., Dijkema C., Stams A. J. M., Zehnder A. J. B. 1991; Propionate metabolism in anaerobic bacteria: determination of carboxylation reactions with 13C-NMR spectro-scopy. Biochim Biophys Acda 1056:126–132
    [Google Scholar]
  19. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  20. Johnson J. L. 1981; Genetic characterization. In Manual of Methods for General Bacteriology450–472 Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips. G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  21. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism 321–132 Munro H. N. New York: Academic Press;
    [Google Scholar]
  22. Kaspar H. F., Wuhrmann K. 1978a; Kinetic parameters and relative turnovers of some important catabolic reactions in digesting sludge. Appl Environ Microbiol 36:1–7
    [Google Scholar]
  23. Kaspar H. F., Wuhrmann K. 1978b; Product inhibition in sludge digestion. Microb Ecol 4:241–248
    [Google Scholar]
  24. Koch M., Dolfing J., Wuhrmann K., Zehnder A. 1983; Pathways of propionate degradation by enriched methanogenic cocultures. Appl Environ Microbiol 45:1411–1414
    [Google Scholar]
  25. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. iProc Natl Acad Sci USA 82:6955–6959
    [Google Scholar]
  26. Larsen N., Olsen J. G., Maidak B. L., McCaughey M. J., Over-beek R., Macke T. J., Barsh T. L., Woese C R. 1993; Theribosomal database project. Nucleic Acids Res 21:3021–3023
    [Google Scholar]
  27. Lemire B. D., Robinson J. J., Bradley R. D., Scraba D. G., Weiner J. H. 1983; Structure of fumarate reductase on the cytoplasmic membrane of Escherichia coli. J Bacteriol 155:391–397
    [Google Scholar]
  28. Liu Y., Balkwill D. L., Aldrich H. C., Boone D. R. 1998; A novel anaerobic syntrophic bacterium that degrades propionate and produces butyrate. Atlanta: GA; Abstr Gen Meet Am Soc Microbiol Abstract I52316
    [Google Scholar]
  29. Lonergan D. J., Jenter H. L., Coates J. D., Phillips E. J., Schmidt T. M., Lovley D. R. 1996; Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J Bacteriol 178:2402–2408
    [Google Scholar]
  30. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J. P., Gorby Y. A., Goodwin S. 1993; Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344
    [Google Scholar]
  31. McBride L J., Koepf S. M., Gibbs R. A., Salser W., Mayrand P. E., Hunkapiller M. W., Kronick M. N. 1989; Automated DNA sequencing methods involving polymerase chain reaction. Clin Chem 35:2196–2201
    [Google Scholar]
  32. Mclnerney M. J., Bryant M. P. 1981; Review of methane fermentation fundamentals. In Fuel gas production from bio-mass19–6 Wise D. L. Boca Raton, FL: CRC Press;
    [Google Scholar]
  33. Mclnerney M. J., Wofford N. Q. 1992; Enzymes involved in crotonate metabolism in Syntrophomonas wolfei. Arch Microbiol 158:344–349
    [Google Scholar]
  34. Mclnerney M. J., Bryant M. P., Pfennig N. 1979; Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135
    [Google Scholar]
  35. Mclnerney M. J., Bryant M. P., Hespell R. B., Costerton J. W. 1981; Syntrophomonas wolfei gen. nov. sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41:1029–1039
    [Google Scholar]
  36. Maestrojuán G. M., Boone D. R. 1991; Characterization of Methanosarcina barkeri MST and 227, Methanosarcina mazei S-6T and Methanosarcina vacuolata Z-76F. Int J Syst Bacteriol 41:267–274
    [Google Scholar]
  37. Miller T. L., Wolin M. J. 1974; A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987
    [Google Scholar]
  38. Oude Elferink S. J. W. H., Maas R. N., Harmsen H. J., Stams A. J. M. 1995; Desulforhabdus amigenus gen. nov., sp. nov., a sulfate reducer isolated from anaerobic granular sludge. Arch Microbiol 164:119–124
    [Google Scholar]
  39. Oyaizu H., Woese C. R. 1985; Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria, and purple bacteria. Syst Appl Microbiol 6:257–263
    [Google Scholar]
  40. Pfennig N., Biebl H. 1976; Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12
    [Google Scholar]
  41. Plugge C. M., Dijkema C., Stams A. J. M. 1993; Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76
    [Google Scholar]
  42. Robbins J. E. 1987; 13C nuclear magnetic resonance studies of propionate catabolism in methanogenic cocultures. Appl Environ Microbiol 53:2260–2261
    [Google Scholar]
  43. Robbins J. 1988; A proposed pathway for catabolism of propionate in methanogenic cultures. Appl Environ Microbiol 54:1300–1301
    [Google Scholar]
  44. Samain E., Moletta R., Dubourguier H. C., Albagnac G. 1984; Propionate conversion to butyrate in an anaerobic digester. In Biotechnological Advances in Processing Municipal Wastes for Fuels and Chemicals223–233 Antonopoulos A. A. Argonne, IL: Argonne National Laboratory;
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Sauer K. D., Stroot P., Mackie R. I., Raskin L. 1997; Microbial population dynamics linked to performance during anaerobic co-digestion of municipal solid waste and sewage sludge. In 8th International Conference on Anaerobic Digestion Sendai; Japan:
    [Google Scholar]
  47. Schink B. 1985; Mechanisms and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650
    [Google Scholar]
  48. Schink B. 1997; Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280
    [Google Scholar]
  49. Shen W. F., Squires C. L., Squires C. L. 1982; Nucleotide sequence of the rrnG ribosomal RNA promoter region of Escherichia coli. Nucleic Acids Res 10:3303–3313
    [Google Scholar]
  50. Sowers K. R., Noll K. M. 1995; Techniques for anaerobic growth. In Archaea: a Laboratory Manual15–47 Robb F. T., Sowers K. R., Schreier H. J., DasSarma S., Fleischmann. E. M. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Stadtman T. C., Barker H. A. 1951; Studies on the methane fermentation. VIII. Tracer experiments on fatty acid oxidation by methane bacteria. J Bacteriol 61:67–80
    [Google Scholar]
  52. Stams A. J. M., Dong X. 1995; Role of formate and hydrogen in the degradation of propionate and butyrate by defined suspended cocultures of acetogenic and methanogenic bacteria. Antonie Leeuwenhoek J Microbiol 68:281–284
    [Google Scholar]
  53. Stams A. J. M., Van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  54. Swofford D. L. 1993 paup: Phylogenetic Analysis Using Parsimony Champaign, IL: Illinois Natural History Survey;
    [Google Scholar]
  55. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180
    [Google Scholar]
  56. Thiele J. H., Chartrain M., Zeikus J. 1988; Control of interspecies electron flow during anaerobic digestion: role of floe formation in syntrophic methanogenesis. Appl Environ Microbiol 54:10–19
    [Google Scholar]
  57. Tholozan J. L., Samain E., Grivet J. P., Moletta R., Dubourguier H. C., Albagnac G. 1988; Reductive carboxylation of propionate to butyrate in methanogenic ecosystems. Appl Environ Microbiol 54:441–445
    [Google Scholar]
  58. Wallrabenstein C., Hauschild E., Schink B. 1994; Pure culture and cytological properties of Syntrophobacter wolinii. FEMS Microbiol Lett 123:249–254
    [Google Scholar]
  59. Wallrabenstein C., Gorny N., Springer N., Ludwig W., Schink B. 1995a; Pure culture of Syntrophus buswellii, definition of its phylogenetic status, and description of Syntrophus gentianae sp. nov. Syst Appl Microbiol 18:62–66
    [Google Scholar]
  60. Wallrabenstein C., Hauschild E., Schink B. 1995b; Syntrophobacter pfennigii sp. nov., a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352
    [Google Scholar]
  61. Weiner J. H., Lemire B. D., Elmes M. L., Bradley R. D., Scraba D. G. 1984; Overproduction of fumarate reductase in Escherichia coli induces a novel intracellular lipid-protein organdie. J Bacteriol 158:590–596
    [Google Scholar]
  62. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. j Bacteriol 173:697–703
    [Google Scholar]
  63. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400
    [Google Scholar]
  64. Wolin M. J. 1982; Hydrogen transfer in microbial communities. In Microbial Interactions and Communities323–356 Bull A. T., Slater J. H. London: Academic Press;
    [Google Scholar]
  65. Zhao H., Yang D., Woese C. R., Bryant M. P. 1989; Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40:40–44
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/00207713-49-2-545
Loading
/content/journal/ijsem/10.1099/00207713-49-2-545
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error