1887

Abstract

Two Gram-stain-negative strains, RCAM04680 and RCAM04685, were isolated from root nodules of the relict legume (Pall.) Poir. originating from the south-western shore of Lake Khuvsgul (Mongolia). The 16S rRNA gene () sequencing data showed that these novel isolates belong to the genus and are phylogenetically closest to the type strains LMG 26379, LMG 28367, LMG 26221 and LMG 26383 (the -similarity levels were 98.7–98.8 %). The gene of strain RCAM04680 showed the highest sequence similarity to the type strain LMG 26383 (95.4 %), while its gene was closest to that of LMG 26379 (94.4 %). The ITS, and sequences of this isolate were most similar to the LMG 28367 (86.8 % for ITS, 90.4 % for the other genes). The most abundant fatty acid was Cω7 (40.8 %). The whole genomes of strains RCAM04680 and RCAM04685 were identical (100 % average nucleotide identity). The highest average nucleotide identity value (82.8 %) was found between the genome of strain RCAM04680 and LMG 28367. The common ABC genes required for legume nodulation were absent in both strains; however, some other symbiotic , , and genes were detected. Based on the genetic study, as well as analyses of the whole-cell fatty acid compositions and phenotypic properties, a new species, sp. nov. (type strain RCAM04680 (=LMG 31125), is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003509
2019-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2687.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003509&mimeType=html&fmt=ahah

References

  1. Stepantsova N. Plant atlas of the west coast of Lake Baikal. Reprocentr А1 . Irkutsk, Russian Federation 2006; 600: http://baikalflora.narod.ru/ohran2.html
    [Google Scholar]
  2. Zhang J. Alpine Plants of China New YorkGordon & Breach; 1982 pp. 144
    [Google Scholar]
  3. Komarov V. Flora of the USSR Israel Program for Scientific Translation; 1968 pp. 244
    [Google Scholar]
  4. Mandal R. Studies on phytochemical screening, antimicrobial, antioxidant and cytotoxic activities of Caragana jubata of Nepal. APCT 2016; 1:1–8 [View Article]
    [Google Scholar]
  5. Ji Z, Yan H, Cui Q, Wang E, Chen W et al. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana . Syst Appl Microbiol 2015; 38:176–183 [View Article][PubMed]
    [Google Scholar]
  6. Li M, Li Y, Chen WF, Sui XH, Li Y et al. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the north of China. Syst Appl Microbiol 2012; 35:239–245 [View Article][PubMed]
    [Google Scholar]
  7. Moukoumi J, Hynes RK, Dumonceaux TJ, Town J, Bélanger N. Characterization and genus identification of rhizobial symbionts from Caragana arborescens in western Canada. Can J Microbiol 2013; 59:399–406 [View Article][PubMed]
    [Google Scholar]
  8. Das SK, Mishra AK, Tindall BJ, Rainey FA, Stackebrandt E. Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 1996; 46:981–987 [View Article][PubMed]
    [Google Scholar]
  9. La Scola B, Mallet MN, Grimont PA, Raoult D. Bosea eneae sp. nov., Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov., isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996). Int J Syst Evol Microbiol 2003; 53:15–20 [View Article][PubMed]
    [Google Scholar]
  10. Ouattara AS, Assih EA, Thierry S, Cayol JL, Labat M et al. Bosea minatitlanensis sp. nov., a strictly aerobic bacterium isolated from an anaerobic digester. Int J Syst Evol Microbiol 2003; 53:1247–1251 [View Article][PubMed]
    [Google Scholar]
  11. De Meyer SE, Willems A. Multilocus sequence analysis of Bosea species and description of Bosea lupini sp. nov., Bosea lathyri sp. nov. and Bosea robiniae sp. nov., isolated from legumes. Int J Syst Evol Microbiol 2012; 62:2505–2510 [View Article][PubMed]
    [Google Scholar]
  12. Safronova VI, Kuznetsova IG, Sazanova AL, Kimeklis AK, Belimov AA et al. Bosea vaviloviae sp. nov., a new species of slow-growing rhizobia isolated from nodules of the relict species Vavilovia formosa (Stev.) Fed. Antonie Van Leeuwenhoek 2015; 107:911–920 [View Article][PubMed]
    [Google Scholar]
  13. Albert RA, McGuine M, Pavlons SC, Roecker J, Bruess J et al. Bosea psychrotolerans sp. nov., a psychrotrophic alphaproteobacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 2019; 69:1376–1383 [View Article][PubMed]
    [Google Scholar]
  14. Novikova N, Safronova V. Transconjugants of Agrobacterium radiobacter harbouring sym genes of Rhizobium galegae can form an effective symbiosis with Medicago sativa . FEMS Microbiol Lett 1992; 72:261–268 [View Article][PubMed]
    [Google Scholar]
  15. Vincent JM. A manual for the practical study of root nodule bacteria. In Handbook IBP Blackwell Scientific Publications; Oxford and Edinburgh: 1970 pp. 73–97
    [Google Scholar]
  16. Safronova V, Tikhonovich I. Automated cryobank of microorganisms: Unique possibilities for long-term authorized depositing of commercial microbial strains. In Mendez-Vilas A. (editor) Microbes in applied research: current advances and challenges World Scientific Publishing Co; 2012 pp. 331–334
    [Google Scholar]
  17. Safronova VI, Sazanova AL, Kuznetsova IG, Belimov AA, Andronov EE et al. Phyllobacterium zundukense sp. nov., a novel species of rhizobia isolated from root nodules of the legume species Oxytropis triphylla (Pall.) Pers. Int J Syst Evol Microbiol 2018; 68:1644–1651 [View Article][PubMed]
    [Google Scholar]
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  19. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  20. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  21. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 https://doi.org/ [View Article][PubMed]
    [Google Scholar]
  22. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  23. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  24. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  25. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  26. Edgren T, Nordlund S. The fixABCX genes in Rhodospirillum rubrum encode a putative membrane complex participating in electron transfer to nitrogenase. J Bacteriol 2004; 186:2052–2060 [View Article][PubMed]
    [Google Scholar]
  27. Johnson DC, Dos Santos PC, Dean DR. NifU and NifS are required for the maturation of nitrogenase and cannot replace the function of isc-gene products in Azotobacter vinelandii . Biochem Soc Trans 2005; 33:90–93 [View Article][PubMed]
    [Google Scholar]
  28. Lohrke SM, Day B, Kolli VS, Hancock R, Yuen JP et al. The Bradyrhizobium japonicum noeD gene: a negatively acting, genotype-specific nodulation gene for soybean. Mol Plant Microbe Interact 1998; 11:476–488 [View Article][PubMed]
    [Google Scholar]
  29. Safronova V, Belimov A, Sazanova A, Kuznetsova I, Popova J et al. Does the Miocene-Pliocene relict legume Oxytropis triphylla form nitrogen-fixing nodules with a combination of bacterial strains?. Int J Environ Stud 2017; 74:706–714 [View Article]
    [Google Scholar]
  30. Kang S, Han SR, Oh TJ, Park H. Complete genome sequence of thiosulfate-oxidizing Bosea sp. strain PAMC26642 isolated from an Arctic lichen. J Biotechnol 2016; 223:38–39 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003509
Loading
/content/journal/ijsem/10.1099/ijsem.0.003509
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error