pCREB in the Neonate Rat Olfactory Bulb Is Selectively and Transiently Increased by Odor Preference–Conditioned Training

  1. John H. McLean1,3,
  2. Carolyn W. Harley2,
  3. Andrea Darby-King1, and
  4. Qi Yuan1
  1. 1Division of Basic Medical Sciences and 2Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3V6

Abstract

Early olfactory preference learning in rat pups occurs when novel odors are paired with tactile stimulation, for example stroking. cAMP-triggered phosphorylation of cAMP response element binding protein (pCREB) has been implicated as a mediator of learning and memory changes in various animals (Frank and Greenberg 1994). In the present study we investigate whether CREB is phosphorylated in response to conditioned olfactory training as might be predicted given the proposed role of the phosphorylated protein in learning.

On postnatal day 6, pups were trained for 10 min using a standard conditioned olfactory learning paradigm in which a conditioned stimulus, Odor, was either used alone or paired with an unconditioned stimulus, Stroking (using a fine brush to stroke the pup). In some instances stroking only was used. The pups were sacrificed at 0, 10, 30, or 60 min after the training. Using Western blot analysis, we observed that the majority of olfactory bulbs in conditioned pups (Odor + Stroking) had a greater increase in pCREB activation at 10 min after training than pups given nonlearning training (Odor only or Stroking only). The phosphorylated protein levels were low at 0 min and at 60 min after training. This is in keeping with the slightly delayed and short-lived activation period for this protein.

The localization of pCREB increases within the olfactory bulb as seen by immunocytochemistry. Naive pups were not exposed to odor or training. There was a significantly higher level of label in mitral cell nuclei within the dorsolateral quadrant of the bulb of pups undergoing odor-stroke pairing. No significant differences were observed among nonlearning groups (Naive, Odor only, or Stroking only) or among any training groups in the granule or periglomerular cells of the dorsolateral region. The localized changes in the nuclear protein are consistent with studies showing localized changes in the bulb in response to a learned familiar odor. The present study demonstrates that selective increases in pCREB occur as an early step following pairing procedures that normally lead to the development of long-term olfactory memories in rat pups. These results support the hypothesized link between pCREB and memory formation.

Footnotes

  • 3 Corresponding author.

  • E-MAIL mclean{at}morgan.ucs.mun.ca; FAX (709) 737-7010.

    • Received September 18, 1999.
    • Accepted October 15, 1999.
| Table of Contents