Glassy ferromagnetism and magnetic phase separation in La1xSrxCoO3

J. Wu and C. Leighton
Phys. Rev. B 67, 174408 – Published 14 May 2003
PDFExport Citation

Abstract

We present the results of a comprehensive investigation of the dc magnetization, ac susceptibility, and magnetotransport properties of the glassy ferromagnet La1xSrxCoO3. The compositions studied span the range from the end-member LaCoO3 (x=0.0) through to x=0.7. These materials have attracted attention recently, primarily due to the spin-state transition phenomena in LaCoO3 and the unusual nature of the magnetic ground state for finite x. In this paper we present a consistent picture of the magnetic behavior of La1xSrxCoO3 in terms of short-range ferromagnetic ordering and intrinsic phase separation. At high Sr doping (x>0.2) the system exhibits unconventional ferromagnetism (with a Curie temperature up to 250 K), which is interpreted in terms of the coalescence of short-range-ordered ferromagnetic clusters. Brillouin function fits to the temperature dependence of the magnetization as well as high-temperature Curie-Weiss behavior suggest that the Co3+ and Co4+ ions are both in the intermediate spin state. At lower Sr doping (x<0.18) the system enters a mixed phase that displays the characteristics of both a spin glass and a ferromagnet. A cusp in the zero-field-cooled dc magnetization, a frequency-dependent peak in the ac susceptibility and time-dependent effects in both dc and ac magnetic properties all point towards glassy behavior. On the other hand, field cooling results in a relatively large ferromagneticlike moment, with zero-field-cooled and field-cooled magnetizations bifurcating at an irreversibility point. Even in the region above x=0.2 the out-of-phase component of the ac susceptibility shows frequency-dependent peaks below the Curie temperature (indicative of glassy behavior) which have previously been interpreted in terms of the freezing of clusters. All of the results are consistent with the existence of a strong tendency towards magnetic phase separation in this material, a conclusion which is further reinforced by consideration of the electronic properties. The metal-insulator transition is observed to be coincident with the onset of ferromagnetic ordering (x=0.18) and has a behavior in the doping dependence of the low-temperature conductivity which is strongly suggestive of percolation. This can be interpreted as a percolation transition within the simple ferromagnetic cluster model. On the metallic side of the transition the system exhibits colossal magnetoresistance-type behavior with a peak in the negative magnetoresistance (∼10% in 90 kOe) in the vicinity of the Curie temperature. As the transition is approached from the metallic side we observe the onset of a negative magnetoresistance that increases in magnitude with decreasing temperature, reaching values as large as 90% in a 90-kOe field. This magnetoresistance is enhanced at the metal-insulator transition, where it persists even to room temperature.

  • Received 18 November 2002

DOI:https://doi.org/10.1103/PhysRevB.67.174408

©2003 American Physical Society

Authors & Affiliations

J. Wu and C. Leighton

  • Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455

References (Subscription Required)

Click to Expand
Issue

Vol. 67, Iss. 17 — 1 May 2003

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×