Thermal chain model of electrorheology and magnetorheology

James E. Martin
Phys. Rev. E 63, 011406 – Published 27 December 2000
PDFExport Citation

Abstract

Steady shear simulations of electrorheology (ER) and magnetorheology (MR) in a uniaxial field are presented. These large scale simulations are three dimensional, and include the effect of Brownian motion. In the absence of thermal fluctuations, the expected shear thinning viscosity is observed and a striped phase is seen to rapidly form in a uniaxial field, with a shear slip zone in each sheet. However, as the influence of Brownian motion increases, the fluid stress decreases, especially at lower Mason numbers, and the striped phase eventually disappears, even when the fluid stress is still high. To account for the uniaxial steady shear data we propose a microscopic chain model of the role played by thermal fluctuations on the rheology of ER and MR fluids that delineates the regimes where an applied field can impact the fluid viscosity, and gives an analytical prediction for the thermal effect.

  • Received 27 March 2000

DOI:https://doi.org/10.1103/PhysRevE.63.011406

©2000 American Physical Society

Authors & Affiliations

James E. Martin

  • Sandia National Laboratories, Albuquerque, New Mexico 87185-1421

References (Subscription Required)

Click to Expand
Issue

Vol. 63, Iss. 1 — January 2001

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×