Colloquium: Failure of molecules, bones, and the Earth itself

Markus J. Buehler and Sinan Keten
Rev. Mod. Phys. 82, 1459 – Published 10 May 2010

Abstract

Materials fail by recurring rupture and shearing of interatomic bonds at microscopic, molecular scales, leading to disintegration of matter at macroscale and a loss of function. In this Colloquium, the state-of-the-art of investigations on failure mechanisms in materials are reviewed, in particular focusing on atomistic origin of deformation and fracture and relationships between molecular mechanics and macroscale behavior. Simple examples of fracture phenomena are used to illustrate the significance and impact of material failure on our daily lives. Based on case studies, mechanisms of failure of a wide range of materials are discussed, ranging from tectonic plates to rupture of single molecules, and an explanation on how atomistic simulation can be used to complement experimental studies and theory to provide a novel viewpoint in the analysis of complex systems is provided. Biological protein materials are used to illustrate how extraordinary properties are achieved through the utilization of intricate structures where the interplay of weak and strong chemical bonds, size and confinement effects, and hierarchical features play a fundamental role. This leads to a discussion of how even the most robust biological material systems fail, leading to diseases that arise from structural and mechanical alterations at molecular, cellular, and tissue levels. New research directions in the field of materials failure and materials science are discussed and the impact of improving the current understanding of materials failure for applications in nanotechnology, biotechnology, medicine as well as the built environment.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
17 More

    DOI:https://doi.org/10.1103/RevModPhys.82.1459

    ©2010 American Physical Society

    Authors & Affiliations

    Markus J. Buehler*

    • Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A&B, Cambridge, Massachusetts 02139, USA; Center for Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA; and Center for Computational Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

    Sinan Keten

    • Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-235A&B, Cambridge, Massachusetts 02139, USA

    • *FAX: +1-617-324-4014. mbuehler@MIT.EDU

    Article Text (Subscription Required)

    Click to Expand

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 82, Iss. 2 — April - June 2010

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Reviews of Modern Physics

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×