Multipartite entanglement measure and complete monogamy relation

Yu Guo and Lin Zhang
Phys. Rev. A 101, 032301 – Published 2 March 2020

Abstract

Although many different entanglement measures have been proposed so far, much less is known in the multipartite case, which leads to the previous monogamy relations in the literature being not complete. We establish here a strict framework for defining the multipartite entanglement measure (MEM): apart from the postulates of the bipartite measure, i.e., vanishing on separable measures and nonincreasing under local operations and classical communication, a complete MEM should additionally satisfy the unification condition and the hierarchy condition. We then come up with a complete monogamy formula for the unified MEM (an MEM is called a unified MEM if it satisfies the unification condition) and a tightly complete monogamy relation for the complete MEM (an MEM is called a complete MEM if it satisfies both the unification condition and the hierarchy condition). Consequently, we propose MEMs which are multipartite extensions of entanglement of formation (EoF), concurrence, tangle, Tsallis q entropy of entanglement, Rényi α entropy of entanglement, the convex-roof extension of negativity, and negativity. We show that (i) the extensions of EoF, concurrence, tangle, and Tsallis q entropy of entanglement are complete MEMs; (ii) multipartite extensions of Rényi α entropy of entanglement, negativity, and the convex-roof extension of negativity are unified MEMs but not complete MEMs; and (iii) all these multipartite extensions are completely monogamous, and the ones which are defined by the convex-roof structure (except for the Rényi α entropy of entanglement and the convex-roof extension of negativity) are not only completely monogamous but also tightly completely monogamous. In addition, as a byproduct, we find a class of states that satisfy the additivity of EoF. We also find a class of tripartite states one part of which can be maximally entangled with the other two parts simultaneously according to the definition of mixed maximally entangled state (MMES) in Li et al. [Z. Li, M. Zhao, S. Fei, H. Fan, and W. Liu, Quantum Inf. Comput. 12, 0063 (2012)]. Consequently, we improve the definition of maximally entangled state (MES) and prove that the only MES is the pure MES.

  • Figure
  • Figure
  • Received 4 November 2019
  • Accepted 10 February 2020

DOI:https://doi.org/10.1103/PhysRevA.101.032301

©2020 American Physical Society

Physics Subject Headings (PhySH)

  1. Research Areas
Quantum Information, Science & Technology

Authors & Affiliations

Yu Guo1,* and Lin Zhang2,3,†

  • 1Institute of Quantum Information Science, School of Mathematics and Statistics, Shanxi Datong University, Datong, Shanxi 037009, China
  • 2Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, China
  • 3Max Planck Institute for Mathematics in the Sciences, Leipzig 04103, Germany

  • *guoyu3@aliyun.com
  • godyalin@163.com

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 101, Iss. 3 — March 2020

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review A

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×