First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

Mike Widom, Ibrahim Al-Lehyani, and John A. Moriarty
Phys. Rev. B 62, 3648 – Published 1 August 2000
PDFExport Citation

Abstract

Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  • Received 20 January 2000

DOI:https://doi.org/10.1103/PhysRevB.62.3648

©2000 American Physical Society

Authors & Affiliations

Mike Widom and Ibrahim Al-Lehyani

  • Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

John A. Moriarty

  • Lawrence Livermore National Laboratory, University of California, Livermore, California 94551

References (Subscription Required)

Click to Expand
Issue

Vol. 62, Iss. 6 — 1 August 2000

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×