Magnetic properties of one-dimensional Ni/Cu and Ni/Al multilayered nanowires: Role of nonmagnetic spacers

Partha Pratim Pal and Ranjit Pati
Phys. Rev. B 77, 144430 – Published 29 April 2008

Abstract

We have used density functional theory within spin-polarized local density approximation to investigate the equilibrium structure, electronic, and magnetic properties of one-dimensional Ni/Cu and Ni/Al multilayered nanowires. In particular, we look into the subtle changes in the magnetic properties of the nanowires with the change in the width of the nonmagnetic spacer. Our calculations yield the magnitude of cohesive energy in both the systems to decrease with the increase in the concentration of the nonmagnetic spacer, suggesting that Ni rich nanowires are more stable. Analysis of the magnetic moment per Ni atom (μav) in the Ni/Cu hybrid multilayered nanowire suggests that there is a steady decrease in μav with the increase in the number of Cu layers. In contrast, in Ni/Al multilayered nanowire, there is a nonmonotonic decrease in μav with the increase in Al layers. The observed difference in magnetic property between Ni/Cu and Ni/Al multilayered nanowires is attributed to the dissimilar interfacial bonding in the two cases. In the case of Ni/Al nanowire, the nonmonotonic variation in μav is due to the strong directional nature of the Nid and Alp hybridization, which favors Ni to have higher coordination number. Higher coordination for Ni leads to smaller μav in the Ni/Al multilayered nanowire. However, the hybridization between Nid and Cus states is predominantly responsible for the smaller μav in the Ni/Cu nanowire. Furthermore, we found that in Ni/Al multilayered nanowire with two Al spacer layer, the antiferromagnetic configuration is favored over ferromagnetic configuration. In Ni/Cu multilayered nanowire, ferromagnetic configuration is favored over antiferromagnetic configuration for the same spacer length.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 19 December 2007

DOI:https://doi.org/10.1103/PhysRevB.77.144430

©2008 American Physical Society

Authors & Affiliations

Partha Pratim Pal and Ranjit Pati*

  • Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA

  • *patir@mtu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 77, Iss. 14 — 1 April 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×