Energy relaxation in one-dimensional polariton condensates

M. Wouters, T. C. H. Liew, and V. Savona
Phys. Rev. B 82, 245315 – Published 15 December 2010

Abstract

We study the kinetics of polariton condensation accounting for the condensation process as well as the energy relaxation of condensed polaritons due to their scattering with phonons and excitons. By assuming a Boltzmann kinetic description of the scattering process, we show that intracondensate relaxation can be accounted for by an additional time-dependent term in the Gross-Pitaevskii equation. As an example, we apply the formalism to the experimental results recently obtained in polariton microwires [E. Wertz, L. Ferrier, D. Solnyshkov, R. Johne, D. Sanvitto, A. Lemaître, I. Sagnes, R. Grousson, A. V. Kavokin, P. Senellart, G. Malpuech, and J. Bloch, Nat. Phys. 6, 860 (2010)]. In the presence of a local nonresonant optical pump, a dynamic balance between spatially dependent relaxation and particle loss develops and excites a series of modes, roughly equally spaced in energy. Upon comparison, excellent agreement is found with the experimental data.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 31 August 2010

DOI:https://doi.org/10.1103/PhysRevB.82.245315

©2010 The American Physical Society

Authors & Affiliations

M. Wouters, T. C. H. Liew, and V. Savona

  • Institute of Theoretical Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 82, Iss. 24 — 15 December 2010

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×