Structure and properties of the low-density phase ι-Al2O3 from first principles

Sitaram Aryal, Paul Rulis, Lizhi Ouyang, and W. Y. Ching
Phys. Rev. B 84, 174123 – Published 29 November 2011

Abstract

Of the various phases of transition alumina, iota-alumina (ι-Al2O3) is the least well known. It is considered to be the end member of the mullite series in the limit of zero Si content. The structural details of ι-Al2O3 are not available and its physical properties are totally unknown. Based on an appropriately modified structure of a high alumina content mullite phase close to the 9-1 mullite, we have successfully constructed a structural model for ι-Al2O3. The simulated x-ray diffraction (XRD) pattern of this model agrees well with a measured XRD pattern obtained from samples that claim to belong to ι-Al2O3. ι-Al2O3 is a highly disordered ultralow-density phase of alumina with a theoretical density of 2854 kg/m3. The calculated total energy per Al2O3 is much higher than α-Al2O3 and the other well-known disordered phase, γ-Al2O3. Using this theoretically constructed model, we have calculated the elastic, thermodynamic, electronic, and spectroscopic properties of ι-Al2O3 and compared them with those of α-Al2O3 and γ-Al2O3. It is shown that the mechanical strength of ι-Al2O3 is much weaker with bulk and shear moduli that are only 57 and 42% of α-Al2O3. Phonon dispersion results and the subsequently calculated thermodynamic properties point to the fact that ι-Al2O3 is an alumina phase preceding γ-Al2O3 in the processing of alumina before reaching α-Al2O3. Electronic structure calculations show it to be an insulator with a direct band gap of only 3.0 eV at the Γ point and a higher ionic bonding character than α-Al2O3 and γ-Al2O3. It has a calculated static dielectric constant of 2.73 and a corresponding refractive index of 1.65 that are in agreement with reported data. Also calculated are the Al-K, Al-L3, and O-K edges of the x-ray absorption near edge structure in ι-Al2O3, showing sensitive dependence on its local bonding environment. However, only the weighted average of these spectra can be directly compared with the measured ones which are currently unavailable.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
8 More
  • Received 15 September 2011

DOI:https://doi.org/10.1103/PhysRevB.84.174123

©2011 American Physical Society

Authors & Affiliations

Sitaram Aryal1,*, Paul Rulis1, Lizhi Ouyang2, and W. Y. Ching1

  • 1Department of Physics, University of Missouri-Kansas City, Kansas City, Missouri, 64110, USA
  • 2Department of Physics and Mathematics, Tennessee State University, Nashville, Tennessee, 37221, USA

  • *sra3zd@mail.umkc.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 84, Iss. 17 — 1 November 2011

Reuse & Permissions
Access Options
CHORUS

Article Available via CHORUS

Download Accepted Manuscript
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×