Electron energy filtering by a nonplanar potential to enhance the thermoelectric power factor in bulk materials

Je-Hyeong Bahk, Zhixi Bian, and Ali Shakouri
Phys. Rev. B 87, 075204 – Published 14 February 2013

Abstract

We present a detailed theory on electron energy filtering by the nonplanar potential introduced by dispersed nanoparticles or impurities in bulk materials for enhancement of the thermoelectric power factor. When electrons with energies below a certain cut-off energy are prevented from participating in conduction through the material, the Seebeck coefficient and thus the thermoelectric power factor can be drastically enhanced. Instead of using planar heterostructures which require elaborate epitaxial techniques, we study embedded nanoparticles or impurities so that the conservation of lateral momentum limiting electron transport at heterointerfaces is no longer a limiting factor. Based on the Boltzmann transport equations under the relaxation time approximation, the optimal cut-off energy level that maximizes the power factor is calculated to be a few kBT above the Fermi level, and is a function of the scattering parameter, Fermi level, and temperature. The maximized power factor enhancement is quantified as a function of those parameters. The electronic thermal conductivity and Lorenz number are also shown to be suppressed by the electron filtering to further enhance the thermoelectric figure of merit. We find that the power factor of PbTe at 300 K could be enhanced by more than 120% when the cut-off energy level is 0.2 eV or higher and the carrier density higher than 5×1019 cm3. Finally we propose the use of distributed resonant scatterings to partially realize the nonplanar electron filtering in bulk materials.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
4 More
  • Received 29 August 2012

DOI:https://doi.org/10.1103/PhysRevB.87.075204

©2013 American Physical Society

Authors & Affiliations

Je-Hyeong Bahk1,*, Zhixi Bian2, and Ali Shakouri1,2

  • 1Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA
  • 2Department of Electrical Engineering, University of California, Santa Cruz, California 95064, USA

  • *jbahk@purdue.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 87, Iss. 7 — 15 February 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review B

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×