Mechanics with fractional derivatives

Fred Riewe
Phys. Rev. E 55, 3581 – Published 1 March 1997
PDFExport Citation

Abstract

Lagrangian and Hamiltonian mechanics can be formulated to include derivatives of fractional order [F. Riewe, Phys. Rev. 53, 1890 (1996)]. Lagrangians with fractional derivatives lead directly to equations of motion with nonconservative classical forces such as friction. The present work continues the development of fractional-derivative mechanics by deriving a modified Hamilton's principle, introducing two types of canonical transformations, and deriving the Hamilton-Jacobi equation using generalized mechanics with fractional and higher-order derivatives. The method is illustrated with a frictional force proportional to velocity. In contrast to conventional mechanics with integer-order derivatives, quantization of a fractional-derivative Hamiltonian cannot generally be achieved by the traditional replacement of momenta with coordinate derivatives. Instead, a quantum-mechanical wave equation is proposed that follows from the Hamilton-Jacobi equation by application of the correspondence principle.

    DOI:https://doi.org/10.1103/PhysRevE.55.3581

    ©1997 American Physical Society

    Authors & Affiliations

    Fred Riewe

    • ENSCO, Inc., 445 Pineda Court, Melbourne, Florida 32940

    References (Subscription Required)

    Click to Expand
    Issue

    Vol. 55, Iss. 3 — March 1997

    Reuse & Permissions
    Access Options
    Author publication services for translation and copyediting assistance advertisement

    Authorization Required


    ×
    ×

    Images

    ×

    Sign up to receive regular email alerts from Physical Review E

    Log In

    Cancel
    ×

    Search


    Article Lookup

    Paste a citation or DOI

    Enter a citation
    ×