Brownian simulations and unidirectional flux in diffusion

A. Singer and Z. Schuss
Phys. Rev. E 71, 026115 – Published 16 February 2005

Abstract

The prediction of ionic currents in protein channels of biological membranes is one of the central problems of computational molecular biophysics. Existing continuum descriptions of ionic permeation fail to capture the rich phenomenology of the permeation process, so it is therefore necessary to resort to particle simulations. Brownian dynamics (BD) simulations require the connection of a small discrete simulation volume to large baths that are maintained at fixed concentrations and voltages. The continuum baths are connected to the simulation through interfaces, located in the baths sufficiently far from the channel. Average boundary concentrations have to be maintained at their values in the baths by injecting and removing particles at the interfaces. The particles injected into the simulation volume represent a unidirectional diffusion flux, while the outgoing particles represent the unidirectional flux in the opposite direction. The classical diffusion equation defines net diffusion flux, but not unidirectional fluxes. The stochastic formulation of classical diffusion in terms of the Wiener process leads to a Wiener path integral, which can split the net flux into unidirectional fluxes. These unidirectional fluxes are infinite, though the net flux is finite and agrees with classical theory. We find that the infinite unidirectional flux is an artifact caused by replacing the Langevin dynamics with its Smoluchowski approximation, which is classical diffusion. The Smoluchowski approximation fails on time scales shorter than the relaxation time 1γ of the Langevin equation. We find that the probability of Brownian trajectories that cross an interface in one direction in unit time Δt equals that of the probability of the corresponding Langevin trajectories if γΔt=2. That is, we find the unidirectional flux (source strength) needed to maintain average boundary concentrations in a manner consistent with the physics of Brownian particles. This unidirectional flux is proportional to the concentration and inversely proportional to Δt to leading order. We develop a BD simulation that maintains fixed average boundary concentrations in a manner consistent with the actual physics of the interface and without creating spurious boundary layers.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 11 April 2004

DOI:https://doi.org/10.1103/PhysRevE.71.026115

©2005 American Physical Society

Authors & Affiliations

A. Singer* and Z. Schuss

  • Department of Applied Mathematics, Tel-Aviv University, Ramat-Aviv, 69978 Tel-Aviv, Israel

  • *Electronic address: amits@post.tau.ac.il
  • Electronic address: schuss@post.tau.ac.il

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 71, Iss. 2 — February 2005

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×