Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions

Gordon F. Christopher, N. Nadia Noharuddin, Joshua A. Taylor, and Shelley L. Anna
Phys. Rev. E 78, 036317 – Published 18 September 2008

Abstract

An experimental study of droplet breakup in T-shaped microfluidic junctions is presented in which the capillary number and flow rate ratio are varied over a wide range for several different viscosity ratios and several different ratios of the inlet channel widths. The range of conditions corresponds to the region in which both the squeezing pressure that arises when the emerging interface obstructs the channel and the viscous shear stress on the emerging interface strongly influence the process. In this regime, the droplet volume depends on the capillary number, the flow rate ratio, and the ratio of inlet channel widths, which controls the degree of confinement of the droplets. The viscosity ratio influences the droplet volume only when the viscosities are similar. When there is a large viscosity contrast in which the dispersed-phase liquid is at least 50 times smaller than the continuous-phase liquid, the resulting size is independent of the viscosity ratio and no transition to a purely squeezing regime appears. In this case, both the droplet volume and the droplet production frequency obey power-law behavior with the capillary number, consistent with expectations based on mass conservation of the dispersed-phase liquid. Finally, scaling arguments are presented that result in predicted droplet volumes that depend on the capillary number, flow rate ratio, and width ratio in a qualitatively similar way to that observed in experiments.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
2 More
  • Received 25 March 2008

DOI:https://doi.org/10.1103/PhysRevE.78.036317

©2008 American Physical Society

Authors & Affiliations

Gordon F. Christopher, N. Nadia Noharuddin, Joshua A. Taylor, and Shelley L. Anna*

  • Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

  • *Author to whom correspondence should be addressed. sanna@cmu.edu

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 78, Iss. 3 — September 2008

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×