Interdependent networks with identical degrees of mutually dependent nodes

Sergey V. Buldyrev, Nathaniel W. Shere, and Gabriel A. Cwilich
Phys. Rev. E 83, 016112 – Published 27 January 2011

Abstract

We study a problem of failure of two interdependent networks in the case of identical degrees of mutually dependent nodes. We assume that both networks (A and B) have the same number of nodes N connected by the bidirectional dependency links establishing a one-to-one correspondence between the nodes of the two networks in a such a way that the mutually dependent nodes have the same number of connectivity links; i.e., their degrees coincide. This implies that both networks have the same degree distribution P(k). We call such networks correspondently coupled networks (CCNs). We assume that the nodes in each network are randomly connected. We define the mutually connected clusters and the mutual giant component as in earlier works on randomly coupled interdependent networks and assume that only the nodes that belong to the mutual giant component remain functional. We assume that initially a 1p fraction of nodes are randomly removed because of an attack or failure and find analytically, for an arbitrary P(k), the fraction of nodes μ(p) that belong to the mutual giant component. We find that the system undergoes a percolation transition at a certain fraction p=pc, which is always smaller than pc for randomly coupled networks with the same P(k). We also find that the system undergoes a first-order transition at pc>0 if P(k) has a finite second moment. For the case of scale-free networks with 2<λ3, the transition becomes a second-order transition. Moreover, if λ<3, we find pc=0, as in percolation of a single network. For λ=3 we find an exact analytical expression for pc>0. Finally, we find that the robustness of CCN increases with the broadness of their degree distribution.

  • Figure
  • Figure
  • Figure
  • Received 16 September 2010

DOI:https://doi.org/10.1103/PhysRevE.83.016112

© 2011 American Physical Society

Authors & Affiliations

Sergey V. Buldyrev, Nathaniel W. Shere, and Gabriel A. Cwilich

  • Department of Physics, Yeshiva University, 500 West 185th Street, New York, New York 10033, USA

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 83, Iss. 1 — January 2011

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review E

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×