Time-Dependent Density Functional Theory for Many-Electron Systems Interacting with Cavity Photons

I. V. Tokatly
Phys. Rev. Lett. 110, 233001 – Published 4 June 2013

Abstract

Time-dependent (current) density functional theory for many-electron systems strongly coupled to quantized electromagnetic modes of a microcavity is proposed. It is shown that the electron-photon wave function is a unique functional of the electronic (current) density and the expectation values of photonic coordinates. The Kohn-Sham system is constructed, which allows us to calculate the above basic variables by solving self-consistent equations for noninteracting particles. We suggest possible approximations for the exchange-correlation potentials and discuss implications of this approach for the theory of open quantum systems. In particular we show that it naturally leads to time-dependent density functional theory for systems coupled to the Caldeira-Leggett bath.

  • Received 8 March 2013

DOI:https://doi.org/10.1103/PhysRevLett.110.233001

© 2013 American Physical Society

Authors & Affiliations

I. V. Tokatly*

  • Nano-bio Spectroscopy group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Universidad del País Vasco UPV/EHU, E-20018 San Sebastían, Spain and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain

  • *ilya.tokatly@ehu.es

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 110, Iss. 23 — 7 June 2013

Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Letters

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×