To read this content please select one of the options below:

Functionalizing stereolithography resins: effects of dispersed multi‐walled carbon nanotubes on physical properties

J. Hector Sandoval (W.M. Keck Border Biomedical Manufacturing and Engineering Laboratory, University of Texas at El Paso, El Paso, Texas, USA)
Ryan B. Wicker (W.M. Keck Border Biomedical Manufacturing and Engineering Laboratory, University of Texas at El Paso, El Paso, Texas, USA)

Rapid Prototyping Journal

ISSN: 1355-2546

Article publication date: 1 October 2006

2632

Abstract

Purpose

The present research investigates tailoring the physical properties of stereolithography (SL) epoxy‐based resins by dispersing controlled small amounts of multi‐walled carbon nanotubes (MWCNTs) directly in SL resins prior to layered manufacturing.

Design/methodology/approach

A modified 3D Systems 250/50 SL multi‐material machine was used where the machine was equipped with a solid‐state (355 nm) laser, unique ∼ 500 ml vat, overfill drain vat design that continuously flowed resin into the vat via a peristaltic pump, and 8.89 by 8.89 cm2 platform. The vat did not include a recoating system. Pumping the composite resin assisted in maintaining the MWCNTs dispersed over long periods of time (with MWCNT settling times on the order of one week). The research approach required developing a method for dispersing the MWCNTs in SL resin, determining new SL build parameters for the modified resin and SL machine, and building and testing tensile specimens.

Findings

Mechanical mixing and ultrasonic dispersion provided simple means for dispersing MWCNTs in the SL resin. However, MWCNT agglomerates were observed in all the parts fabricated using the filled resins. Each concentration of MWCNTs resulted in a “new” resin requiring modifications to the SL build parameters, EC and DP. Once characterized, the modified resins performed similar to traditional resins in the SL process. Small dispersions of MWCNTs resulted in improvements in the tensile strength (TS) (or ultimate tensile stress) and fracture stress (FS) of tensile specimens as 0.025 percent (w/v) MWCNTs in DSM Somos® WaterShed™ 11120 resin resulted in increases in TS and FS of 5.7 percent and 26 percent, respectively, when compared to unfilled resin. Increasing the concentration of MWCNTs to 0.10 percent (w/v) resulted in increases in TS and FS of 7.5 percent and 33 percent, respectively, over the unfilled resin. Transmission and scanning electron microscopy showed strong affinity between the epoxy resin and the MWCNTs.

Research limitations/implications

Additional MWCNT type and concentrations in various SL resins should be investigated along with additional means for dispersion to provide sufficient information on developing new SL resins for unique functional applications.

Practical implications

It is anticipated that the methods described here will provide a basis for further development of advanced nanocomposite SL resins for end‐use applications.

Originality/value

This research successfully illustrated the dispersion and use of MWCNTs as a reinforcement material in a commercially available SL resin.

Keywords

Citation

Hector Sandoval, J. and Wicker, R.B. (2006), "Functionalizing stereolithography resins: effects of dispersed multi‐walled carbon nanotubes on physical properties", Rapid Prototyping Journal, Vol. 12 No. 5, pp. 292-303. https://doi.org/10.1108/13552540610707059

Publisher

:

Emerald Group Publishing Limited

Copyright © 2006, Emerald Group Publishing Limited

Related articles