To read this content please select one of the options below:

3D harmonic modeling of eddy currents in segmented conducting structures

C.H.H.M. Custers (Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands)
J.W. Jansen (Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands)
M.C. van Beurden (Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands)
E.A. Lomonova (Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands)

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering

ISSN: 0332-1649

Article publication date: 26 September 2018

Issue publication date: 24 January 2019

271

Abstract

Purpose

The purpose of this paper is to describe a semi-analytical modeling technique to predict eddy currents in three-dimensional (3D) conducting structures with finite dimensions. Using the developed method, power losses and parasitic forces that result from eddy current distributions can be computed.

Design/methodology/approach

In conducting regions, the Fourier-based solutions are developed to include a spatially dependent conductivity in the expressions of electromagnetic quantities. To validate the method, it is applied to an electromagnetic configuration and the results are compared to finite element results.

Findings

The method shows good agreement with the finite element method for a large range of frequencies. The convergence of the presented model is analyzed.

Research limitations/implications

Because of the Fourier series basis of the solution, the results depend on the considered number of harmonics. When conducting structures are small with respect to the spatial period, the number of harmonics has to be relatively large.

Practical implications

Because of the general form of the solutions, the technique can be applied to a wide range of electromagnetic configurations to predict, e.g. eddy current losses in magnets or wireless energy transfer systems. By adaptation of the conductivity function in conducting regions, eddy current distributions in structures containing holes or slit patterns can be obtained.

Originality/value

With the presented technique, eddy currents in conducting structures of finite dimensions can be modeled. The semi-analytical model is for a relatively low number of harmonics computationally faster than 3D finite element methods. The method has been validated and shown to be computationally accurate.

Keywords

Citation

Custers, C.H.H.M., Jansen, J.W., van Beurden, M.C. and Lomonova, E.A. (2019), "3D harmonic modeling of eddy currents in segmented conducting structures", COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, Vol. 38 No. 1, pp. 2-23. https://doi.org/10.1108/COMPEL-02-2018-0070

Publisher

:

Emerald Publishing Limited

Copyright © 2018, Emerald Publishing Limited

Related articles