Skip to main content
Log in

Total mercury and methylmercury levels in commercially important fishes in Japan

  • Published:
Fisheries Science Aims and scope Submit manuscript

Abstract

The distribution of mercury in the muscle and other tissues was determined in 23 species of fishes and invertebrates. This study reveals species-specific patterns of mercury accumulation in the muscle of tuna and alfonsino. Consistently high levels of total mercury were found in Beryx splendens (0.78±0.56 μg/g), Atlantic Thunnus thynnus (0.42±0.06 μg/g), Pacific T. thynnus (0.59±0.34 μg/g), Thunnus obesus (0.98±0.34 μg/g), Makaira nigricans (0.56±0.05 μg/g), Tetraptrus audax (0.51±0.08 μg/g), and Xiphias gladius (0.47±0.24 μg/g). Other fish species had lower levels of total mercury or methylmercury in muscle than the maximum permitted level of mercury in fish in Japan (0.4 μg/g). Total mercury and methylmercury levels in the muscles of T. thynnus, T. obesus, and B. splendens were closely correlated with body weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braune BM. Mercury accumulation in relation to size and age of Atlantic herring (Clupea harengus harengus) from the southwestern Bay of Fundy, Canada. Arch. Environ. Contam. Toxicol. 1987; 16: 311–320.

    Article  PubMed  CAS  Google Scholar 

  2. Burger J, Gaines KF, Gochfeld M. Ethnic differences in risk from mercury among Savannah River fishermen. Risk Anal. 2001; 21: 533–544.

    Article  PubMed  CAS  Google Scholar 

  3. Lacerda LD, Bidone ED, Giumaraes AF, Pfeiffer WC. Mercury concentrations in fish from the Itacaiunas-Parauapebas River system. Carajas region. Amazon Ann. Acad. Bras. Sci. 1994; 66: 373–379.

    CAS  Google Scholar 

  4. Park JG, Curtis LR. Mercury distribution in sediments and bioaccumulation by fish in two Oregon reservoirs: point-source and nonpoint-source impacted systems. Arch. Environ. Contam. Toxicol. 1997; 33: 423–429.

    Article  PubMed  CAS  Google Scholar 

  5. Bjornberg KA, Vahter M, Petersson-Grawe K, Glynn A, Cnattingius S, Darnerud PO, Atuma S, Aune M, Becker W, Berglund M. Methyl mercury and inorganic mercury in Swedish pregnant women and in cord blood: influence of fish consumption. Environ. Health Perspect. 2003; 111: 637–641.

    PubMed  Google Scholar 

  6. Schober SE, Sinks TH, Jones RL, Bolger MP, McDowell M, Osterloh J, Garrett ES, Canady RA, Dillon CF, Sun Y, Joseph CB, Mahaffey KR. Bloodmercury levels in US children and women of childbearing age, 1999–2000. JAMA 2003; 289: 1667–1674.

    Article  PubMed  CAS  Google Scholar 

  7. Jacobson JL, Jacobson SW, Humphrey JB. Effects of in utero exposure to polychlorinated biphenyls and related contaminants on cognitive functioning in young children. J. Pediatr. 1990; 116: 38–45.

    Article  PubMed  CAS  Google Scholar 

  8. Schant Z. SL. Developmental neurotoxicity of PCBs in humans: what do we know and where do we go from here? Neurotoxicol. Teratol. 1996; 18: 217–227.

    Article  Google Scholar 

  9. Sparks P, Shepherd R. Public perceptions of the potential hazards associated with food production: an empirical study. Risk Anal. 1994; 14: 799–808.

    Article  PubMed  CAS  Google Scholar 

  10. Graff RD, Philbert MA, Lowndes HE, Reuhl KR. The effect of glutathione depletion on methyl mercury-induced microtubule disassembly in cultured embryonal carcinoma cells. Toxicol. Appl. Pharmacol. 1993; 120: 20–28.

    Article  PubMed  CAS  Google Scholar 

  11. Dey PM, Gochfeld M, Reuhl KR. Developmental methylmercury administration alters cerebellar PSA-NCAM expression and Golgi sialyltransferase activity. Brain Res. 1999; 845: 139–151.

    Article  PubMed  CAS  Google Scholar 

  12. Weihe P, Grandjean P, Debes F, White R. Health implications for Faroe islanders of heavy metals and PCBs from pilot whales. Sci. Total Environ. 1996; 186: 141–148.

    Article  PubMed  CAS  Google Scholar 

  13. Grandjean P, Weihe P, White RF, Debes F. Cognitive performance of children prenatally exposed to ‘safe’ levels of methylmercury. Environ. Res. 1998; 77: 165–172.

    Article  PubMed  CAS  Google Scholar 

  14. Boush G, Thieleke JR. Total mercury content in yellowfin and bigeye tuna. Bull. Environ. Contam. Toxicol. 1983; 39: 291–297.

    Article  Google Scholar 

  15. Arima S, Umemoto S. Mercury in aquatic organisms — II. Mercury distribution in muscles of tunas and swordfish. Bull. Jpn. Soc. Sci. Fish. 1976; 42: 931–937.

    Google Scholar 

  16. Kamps LR, McMahan B. Utilization of the Westoo procedure for the determination of methyl mercury in fish by gas-liquid chromatography. J. Assoc. Off. Anal. Chem. 1972; 55: 590–595.

    PubMed  CAS  Google Scholar 

  17. Burger J, Gochfeld M. Mercury in canned tuna: white versus light and temporal variation. Environ. Res. 2004; 96: 239–249.

    Article  PubMed  CAS  Google Scholar 

  18. Plessi M, Bertelli D, Monzani A. Mercury and selenium content in selected seafood. J. Food Composition Anal. 2001; 14: 461–467.

    Article  CAS  Google Scholar 

  19. Nakagawa R, Yumita Y, Hiromoto M. Total mercury intake from fish and shellfish by Japanese people. Chemosphere 1997; 35: 2909–2913.

    Article  PubMed  CAS  Google Scholar 

  20. Storelli MM, Stuffler RG, Marcotrigiano GO. Total and methylmercury residues in tuna-fish from the Mediterranean Sea. Food Additiv. Contam. 2002; 19: 715–720.

    Article  CAS  Google Scholar 

  21. Harris HH, Pickering IJ, George GN. The chemical form of mercury in fish. Science 2003; 301: 1203.

    Article  PubMed  CAS  Google Scholar 

  22. Nara M, Baba K, Yamada N, Matsuoka T. Mercury contents in Beryx splendens Lowe and Sebastes matsubarai Hilgendorf. Bull. Shizuoka Pref. Fish. Exp. Stn. 1976; 10: 91–96.

    CAS  Google Scholar 

  23. Takeda M, Ueda T. On mercury and selenium in tuna fish tissues — VII. Selenium level in muscles of yellowfin tuna and in livers and spleens of tuna and marlin. J. Shimonoseki Univ. Fish. 1978; 26: 267–279.

    CAS  Google Scholar 

  24. Piotrowski JK, Trojanowska B, Sapota A. Binding of cadmium and mercury by metallothionein in the kidneys and liver of rats following repeated administration. Arch. Toxicol. 1974; 32: 351–360.

    Article  PubMed  CAS  Google Scholar 

  25. Ikenouye H. Age determination by otolith of a Japanese, Beryx splendens with special reference to growth. Tokyo Univ. Fish. 1969; 55: 2–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Yamashita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamashita, Y., Omura, Y. & Okazaki, E. Total mercury and methylmercury levels in commercially important fishes in Japan. Fish Sci 71, 1029–1035 (2005). https://doi.org/10.1111/j.1444-2906.2005.01060.x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1111/j.1444-2906.2005.01060.x

Key Words

Navigation