Original Research Papers

Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model

Authors:

Abstract

The effects of air pollution on vegetation may provide an important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit photosynthesis by direct cellular damage within the leaves and through possible changes in stomatal conductance. We have incorporated empirical equations derived for trees (hardwoods and pines) and crops into the Terrestrial Ecosystem Model to explore the effects of ozone on net primary production (NPP) and carbon sequestration across the conterminous United States. Our results show a 2.6–6.8% mean reduction for the United States in annual NPP in response to modelled historical ozone levels during the late 1980s-early 1990s. The largest decreases (over 13% in some locations) occur in the Midwest agricultural lands, during the mid-summer when ozone levels are highest. Carbon sequestration since the 1950s has been reduced by 18–38 Tg C yr−1 with the presence of ozone. Thus the effects of ozone on NPP and carbon sequestration should be factored into future calculations of the United States’ carbon budget.

  • Year: 2004
  • Volume: 56 Issue: 3
  • Page/Article: 230–248
  • DOI: 10.3402/tellusb.v56i3.16415
  • Submitted on 7 Oct 2002
  • Accepted on 25 Nov 2003
  • Published on 1 Jan 2004
  • Peer Reviewed