Skip to main content
Log in

Recurrent Patterns of Atrial Depolarization During Atrial Fibrillation Assessed by Recurrence Plot Quantification

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The aim of this study was to determine the presence of organization of atrial activation processes during atrial fibrillation (AF) by assessing whether the activation sequences are wholly random or are governed by deterministic mechanisms. We performed both linear and nonlinear analyses based on the cross correlation function (CCF) and recurrence plot quantification (RPQ), respectively. Recurrence plots were quantified by three variables: percent recurrence (PR), percent determinism (PD), and entropy of recurrences (ER). We recorded bipolar intra-atrial electrograms in two atrial sites during chronic AF in 19 informed subjects, following two protocols. In one, both recording sites were in the right atrium; in the other protocol, one site was in the right atrium, the other one in the left atrium. We extracted 19 episodes of type I AF (Wells' classification). RPQ detected transient recurrent patterns in all the episodes, while CCF was significant only in ten episodes. Surrogate data analysis, based on a cross-phase randomization procedure, decreased PR, PD, and ER values. The detection of spatiotemporal recurrent patterns together with the surrogate data results indicate that during AF a certain degree of local organization exists, likely caused by deterministic mechanisms of activation. © 2000 Biomedical Engineering Society.

PAC00: 8719Nn, 8719Hh, 8780-y, 0705Kf

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • 1Allessie, M. A., W. E. J. E. P. Lammers, F. I. M. Bonke, and J. Hollen. Experimental evaluation of Moe's multiple wavelet hypothesis of atrial fibrillation. In: Cardiac electrophysiology and arrhythmias, edited by D. P. Zipes and J. Jalife. New York: Grune and Stratton, 1985, pp.265-276.

    Google Scholar 

  • 2Allessie, M., K. Koning, C. Kirchhof, and M. Wijffels. Electrophysiologic Mechanisms of Perpetuation of Atrial Fibrillation. Am. J. Cardiol.77:10A-23A, 1996.

    Google Scholar 

  • 3Barbaro, V., P. Bartolini, R. Bernardini, G. Calcagnini, F. Martelli, and S. Morelli. An algorithm for the detection and classification of atrial fibrillation from intra-atrial electrograms., 1998.

  • 4Botteron, G. W., and J. M. Smith. A technique for measurement of the extent of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng.42:579-586, 1995.

    Google Scholar 

  • 5Colosimo, A., A. Giuliani, M. Mancini, G. Piccirillo, and V. Marigliano. Estimating a cardiac age by means of heart rate variability. Am. J. Physiol. Heart Circ. Physiol.273:H1841-H1847, 1997.

    Google Scholar 

  • 6Dabiré, H., D. Mestivier, J. Jarnet, M. E. Safar, and N. P. Chau. Quantification of sympathetic and parasympathetic tones by non-linear indexes in normotensive rats. Am. J. Physiol. Heart Circ. Physiol.275:H1290-H1297, 1998.

    Google Scholar 

  • 7Eckmann, J. P., S. O. Kamphorst, and D. Ruelle. Recurrence plots of dynamical systems. Europhys. Lett.4:973-977, 1987.

    Google Scholar 

  • 8Garfinkel, A., P. S. Chen, D. O. Walter, H. S. Karagueuzian, B. Kogan, S. J. Evans, M. Karpoukhin, C. Hwang, T. Uchida, M. Gotoh, O. Nwasakwa, P. Sager, and J. N. Weiss. Quasiperiodicity and chaos in cardiac fibrillation. J. Clin. Invest.99:305-314, 1997.

    Google Scholar 

  • 9Gerstenfeld, E. P., A. V. Sahakian, and S. Swiryn. Evidence for transient linking of atrial excitation during atrial fibrillation in humans. Circulation86:375-382, 1996.

    Google Scholar 

  • 10Giuliani, A., and C. Manetti. Hidden peculiarities in the potential energy time series of a tripeptide highlighted by a recurrence plot analysis; a molecular dynamic simulation. Phys. Rev. E53:6336-6340, 1996.

    Google Scholar 

  • 11Gray, R. A., J. Jalife, A. V. Panfilov, W. T. Baxter, C. Cabo, J. M. Davidenko, and A. M. Pertsov. Mechanism of cardiac fibrillation. Science270:1222-1233, 1995.

    Google Scholar 

  • 12Gray, R. A., A. M. Pertsov, and J. Jalife. Spatial and temporal organization during cardiac fibrillation. Nature (London)392:75-78, 1995.

    Google Scholar 

  • 13Hoekstra, B. P. T., C. G. H. Diks, M. A. Allessie, and J. DeGoede. Non-linear analysis of epicardial atrial electrograms of electrically induced atrial fibrillation in man. J. Cardiovasc. Electrophysiol.6:419-440, 1995.

    Google Scholar 

  • 14Hoffman, B. F., and M. R. Rosen. Cellular mechanisms for cardiac arrhythmias. PACE11:610-621, 1988.

    Google Scholar 

  • 15Jalife, J., O. Berenfeld, A. Skanes, and R. Mandapati. Mechanisms of atrial fibrillation: mother rotors or multiple daughter wavelets, or both?J. Cardiovasc. Electrophysiol.9:S2-S12, 1998.

    Google Scholar 

  • 16Jenkins, K. J., E. P. Walsh, S. D. Colan, D. M. Bergau, J. P. Saul, and J. E. Lock. Multipolar endocardial mapping of the right atrium during cardiac catheterization: description of a new technique. J. Am. Coll. Cardiol.22:1105-1110, 1993.

    Google Scholar 

  • 17Kaplan, D. T., and R. J. Cohen. Is fibrillation chaos?Circ. Res.67:886-892, 1990.

    Google Scholar 

  • 18Mestivier, D., N. P. Chau, X. Chanudet, B. Baudeceau, and P. Larroque. Relationship between diabetic autonomic dysfunction and heath rate variability assessed by recurrence plot. Am. J. Physiol. Heart Circ. Physiol.272:H1094-H1099, 1997.

    Google Scholar 

  • 19Moe, G. K., On the multiple wavelet hypothesis of atrial fibrillation. Arch. Int. Pharmacodyn. Ther.140:83-188, 1962.

    Google Scholar 

  • 20Moe, G. K., W. C. Rheinboldt, and J. A. Abildskov. A computer model of atrial fibrillation. Am. Heart J.67:200-220, 1964.

    Google Scholar 

  • 21Osaka, M., K. H. Chon, and R. J. Cohen. Distinguish cardiac randomness from chaos. J. Cardiovasc. Electrophysiol.6:441-442, 1995.

    Google Scholar 

  • 22Pitschner, H. F., A. Berkovic, S. Grumbrecht, and J. Neuzner. Multielectrode basket catheter mapping for human atrial fibrillation. J. Cardiovasc. Electrophysiol.9:S48-56, 1998.

    Google Scholar 

  • 23Prichard, D., and J. Theiler. Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett.73:951-954, 1994.

    Google Scholar 

  • 24Provenzale, A. Distinguishing between low-dimensional dynamics and randomness in measured time series. 58, 1992.

  • 25Ropella, K. M., A. V. Sahakian, J. M. Baerman, and S. Swiryn. The coherence spectrum: a quantitative discriminator of fibrillatory and non-fibrillatory cardiac rhythms. Circulation80:112-119, 1989.

    Google Scholar 

  • 26Skanes, A. C., R. Mandapati, O. Berenfeld, J. M. Davidenko, and J. Jalife. Spatiotemporal periodicity during atrial fibrillation in the isolated sheep heart. Circulation98:1236-1248, 1998.

    Google Scholar 

  • 27Sparrow, C. The Lorentz equations: bifurcations, chaos, and strange attractors. New York: Springer, 1982.

    Google Scholar 

  • 28Theiler, J., S. Eubank, A. Longtin, B. Galdrikian, and J. D. Farmer. Testing for nonlinearity in time series: The method of surrogate data. Physica D58:77-94, 1992.

    Google Scholar 

  • 29Webber, C. L., and J. P. Zbilut. Dynamical assessment of physiological systems and states using recurrence plot strategies. J. Appl. Physiol.: Respir., Environ. Exercise Physiol.76:965-973, 1994.

    Google Scholar 

  • 30Wells, J. L., R. B. Karp, N. T. Kouchoukos, W. A. H. Maclean, T. N. James, and A. L. Waldo. Characterization of atrial fibrillation in man: studies following open-heart surgery. PACE1:426-438, 1978.

    Google Scholar 

  • 31Witkowski, F. X., K. M. Kavanagh, P. A. Penkoske, R. Plonsey, M. L. Spano, W. L. Ditto, and D. T. Kaplan. Evidence for determinism in ventricular fibrillation. Phys. Rev. Lett.75:1230-1233, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Censi, F., Barbaro, V., Bartolini, P. et al. Recurrent Patterns of Atrial Depolarization During Atrial Fibrillation Assessed by Recurrence Plot Quantification. Annals of Biomedical Engineering 28, 61–70 (2000). https://doi.org/10.1114/1.248

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.248

Navigation