Skip to main content
Log in

Surface Geometric Analysis of Anatomic Structures Using Biquintic Finite Element Interpolation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The surface geometry of anatomic structures can have a direct impact upon their mechanical behavior in health and disease. Thus, mechanical analysis requires the accurate quantification of three-dimensional in vivo surface geometry. We present a fully generalized surface fitting method for surface geometric analysis that uses finite element based hermite biquintic polynomial interpolation functions. The method generates a contiguous surface of C2 continuity, allowing computation of the finite strain and curvature tensors over the entire surface with respect to a single in-surface coordinate system. The Sobolev norm, which restricts element length and curvature, was utilized to stabilize the interpolating polynomial at boundaries and in regions of sparse data. A major advantage of the current method is its ability to fully quantify surface deformation from an unstructured grid of data points using a single interpolation scheme. The method was validated by computing both the principal curvature distributions for phantoms of known curvatures and the principal stretch and principal change of curvature distributions for a synthetic spherical patch warping into an ellipsoidal shape. To demonstrate the applicability to biomedical problems, the method was applied to quantify surface curvatures of an abdominal aortic aneurysm and the principal strains and change of curvatures of a deforming bioprosthetic heart valve leaflet. The method proved accurate for the computation of surface curvatures, as well as for strains and curvature change for a surface undergoing large deformations. © 2000 Biomedical Engineering Society.

PAC00: 8719Rr, 8719Hh, 8768+z, 0260Ed, 0210Sp

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ahn, S., D. Eton, and K. Hodgson. Current Concepts in Endovascular Surgery. Austin: R. G. Landes, 1994.

    Google Scholar 

  2. Bradley, C., A. Pullan, and P. Hunter. Geometric modeling of the human torso using cubic hermite elements. Ann.Biomed. Eng.25:96–111, 1997.

    Google Scholar 

  3. Chuong, C. J., M. S. Sacks, G. H. Templeton, F. Schwiep, and R. L. Johnson. Regional deformation and contractile function in the canine right ventricle free wall. Am.J.Physiol. 260:H1224–H1235, 1991.

    Google Scholar 

  4. Chuter, T. A. M., C. E. Donayre, and R. A. White. Endoluminal Vascular Prostheses, 1st ed., Boston: Little Brown, 1995.

    Google Scholar 

  5. Damaser, M. S. and S. L. Lehman. Does it matter, the shape of the bladder? Neuro.Urodyn.12:277–280, 1993.

    Google Scholar 

  6. Damaser, M. S. and S. L. Lehman. The effect of urinary bladder shape on its mechanics during filling. J.Biomech 28:725–732, 1995.

    Google Scholar 

  7. Elger, D. F., D. M. Blackketter, R. S. Budwig, and K. H. Johansen. The influence of shape on the stresses in model abdominal aortic aneurysms. J.Biomech.Eng.118:326–332, 1996.

    Google Scholar 

  8. Flugge, W. Stresses in Shells. 2nd ed. New York: Springer, 1973.

    Google Scholar 

  9. Flugge, W. Tensor Analysis and Continuum Mechanics. New York: Springer, 1972.

    Google Scholar 

  10. Fung, Y. Foundations of Solid Mechanics. Englewood Cliffs: Prentice-Hall, 1965.

    Google Scholar 

  11. Gao, Z. B., S. Pandya, N. Hosein, M. S. Sacks, and N. H. C. Hwang. Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J.Biomech.33:199–207, 2000.

    Google Scholar 

  12. Gould, P. L., A. Cataloglu, A. Chattopadyhay, G. Dhatt, and R. E. Clark. Stress analysis of the human aortic valve. Com-put. Struct.3:377, 1973.

    Google Scholar 

  13. Hashima, A. R., A. A. Young, A. D. McCulloch, and L. K. Waldman. Nonhomogeneous analysis of epicardial strain distributions during acute myocardial ischemia in the dog. J.Biomech.26:19–35, 1993.

    Google Scholar 

  14. Hinton, E., and D. R. J. Owen. An Introduction to Finite Element Computations, 1st ed., Swansea, UK: Pineridge, 1979.

    Google Scholar 

  15. Iyengar, A. K. S., and M. S. Sacks. Dynamic Imaging of BHV cuspal motion using laser projection. In: The First Joint BMES/EMBS Conference, 1999, Atlanta, GA: IEEE, 1999, p. Abstracts 37–38.

  16. Lancaster, P., and K. Salkauskas. Curve and Surface Fitting: An Introduction, 1st ed., London: Academic, 1986.

    Google Scholar 

  17. Langhaar, H. L. Foundations of Practical Shell Analysis. Uni-versity of Illinois: Department of Theoretical and Applied Mechanics, 1964.

  18. McCulloch, A. D., B. H. Smaill, and P. J. Hunter. Regional left ventricle epicardial deformation in the passive dog heart. Circ.Res.64:721–733, 1989.

    Google Scholar 

  19. Nielsen, P. M. F., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous struc-ture of the heart. Am.J.Physiol.260:H1365–H1378, 1991.

    Google Scholar 

  20. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Receipes in C. Cambridge: Cambridge University Press, 1988.

    Google Scholar 

  21. Sacks, M. S., C. J. Chuong, G. H. Templeton, and R. Peshock. In vivo 3-D reconstruction and geometric character-ization of the right ventricular free wall. Ann.Biomed.Eng. 21:263–275, 1993.

    Google Scholar 

  22. Sacks, M. S., D. A. Vorp, M. L. Raghavan, M. P. Federle, and M. W. Webster. In vivo 3D surface geometry of abdomi-nal aortic aneurysms. Ann.Biomed.Eng.27:469–479, 1999.

    Google Scholar 

  23. Smith, D. B., M. S. Sacks, M. B. Chancellor, and N. L. Block. In vivo surface geometric analysis of the urinary bladder. In: ASME Summer Bioengineering Conference, 1999, Big Sky, MT; 1999.

  24. Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. Fatigue induced changes in bioprosthestic heart valve 3D geometry and the relation to tissue damage. J.Heart Valve Dis.8:25–33, 1999.

    Google Scholar 

  25. Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. J.Heart Valve Dis.6:424–432, 1997.

    Google Scholar 

  26. Struik, D. J. Lectures on Classical Differential Geometry, 2nd ed., New York: Dovers, 1961.

    Google Scholar 

  27. Terzopoulos, D. Regularization of inverse visual problems involving discontinuities. IEEE Trans.Pattern Anal.Mach. Intell.PAMI-8:413–424, 1986.

    Google Scholar 

  28. Thornton, M. High Speed Dynamic, 3D Surface Imaging, Master of Engineering Science, London, Ontario, University of Western Ontario, 1996.

    Google Scholar 

  29. Vorp, D., A. M. L. Raghavan, and M. W. Webster. Mechanical wall stress in abdominal aortic aneurysm: Influence of diameter and asymmetry. J.Vasc.Surg.27:632–639, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D.B., Sacks, M.S., Vorp, D.A. et al. Surface Geometric Analysis of Anatomic Structures Using Biquintic Finite Element Interpolation. Annals of Biomedical Engineering 28, 598–611 (2000). https://doi.org/10.1114/1.1306342

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1306342

Navigation