Skip to main content
Log in

Nonlinear Dynamics of Microvascular Blood Flow

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Kiani et al. (Kiani, M. F., A. R. Pries, L. L. Hsu, I. H. Sarelius, and G. R. Cokelet, Am. J. Physics. 266: H1822–H1828, 1994) suggested that blood velocity, hematocrit, and nodal pressures can oscillate spontaneously in large microvascular networks in the absence of biological control. This paper presents a model of blood flow in microvascular networks that shows the possibility of sustained spontaneous oscillations in small networks (less than 15 vessel segments). The paper explores mechanisms which cause spontaneous oscillations under some conditions and steady states under others. The existence of sustained oscillations in the absence of biological control provides alternative interpretations of dynamic behavior in the microcirculation. The model includes the Fåhraeus–Lindqvist effect and plasma skimming but no biological control mechanisms. The model is a set of coupled nonlinear partial differential equations. The equations have been solved numerically with the direct marching numerical method of characteristics. The model shows steady-state fixed point and limit cycle dynamics (sometimes showing period doubling). Plasma skimming, and the Fåhraeus–Lindqvist effect, along with arcade type topology are necessary for oscillations to occur. Depending on network parameters, nonoscillating, damped oscillating and sustaining oscillating dynamics have been demonstrated. Oscillations are damped when the residence time one of the vessels is large compared to the residence times for the other vessels. When the residence times for all vessels are comparable, sustained oscillations are possible. © 2000 Biomedical Engineering Society.

PAC00: 8719Tt, 8710+e, 0230Jr

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Barbee, J. and G. R. Cokelet. Prediction of blood flow in tubes with diameters as small as 29 microns. Microvasc.Res. 5:17–21, 1971.

    Google Scholar 

  2. Bouskela, E. Vasomotion frequency and amplitude related to intaluminal pressure and temperature in the wing of the intact, unanesthetized bat. Microvasc.Res. 37:339–351, 1989.

    Google Scholar 

  3. Carr, R. T. and J. Xiao. Plasma skimming in vascular trees: Numerical estimates of symmetry recovery lengths. Microcirculation (Philadelphia) 2:345–353, 1995.

    Google Scholar 

  4. Cokelet, G. R. Blood flow through arterial microvascular bifurcations. In: Microvascular Networks: Experimental and Theoretical Studies, edited by A. S. Popel and P. C. Johnson. Basel, Switzerland: S. Karger AG. 1986, pp 155–167.

    Google Scholar 

  5. Cokelet, G. R. A commentary on the “in vivo viscosity law”. Biorheology 34:363–367, 1997.

    Google Scholar 

  6. Fåhraeus, R. and T. Lindqvist. The viscosity of blood in narrow capillary tubes. Am.J.Physiol. 96:562–568, 1931.

    Google Scholar 

  7. Fenton, B. M., D. W. Wilson, and G. R. Cokelet. Analysis of the effects of measured white cell entrance times on hemo-dynamics in a computer model of microvascular bed. Pflueg.Arch. 403:396–401, 1985.

    Google Scholar 

  8. Fenton, B. M., R. T. Carr, and G. R. Cokelet. Nonuniform red cell distribution in 20 to 100 mm bifurcations. Microvasc.Res. 29:103–126, 1985.

    Google Scholar 

  9. Fung, Y. C. Biomechanics: Circulation. New York: Springer, 1996.

    Google Scholar 

  10. Goldsmith, H. L. Red cell motion and wall interaction in tube flow. Fed.Proc. 30:1578–1588, 1970.

    Google Scholar 

  11. Griffith, T. M. Temporal chaos in the microcirculation. Car-diovasc.Res. 31:342–358, 1996.

    Google Scholar 

  12. Helmke, B. P., S. N. Bremnr, B. W. Zweifach, R. Skalak, and G. W. Schmid-Schonbein. Mechanisms for increased flood flow resistance due to leukocytes. Am.J.Physiol. 273:H2884–H2890, 1997.

    Google Scholar 

  13. Hoffman, J. D. Numerical Methods for Engineers and Scien-tists. New York: McGraw-Hill, 1992, pp. 825.

    Google Scholar 

  14. House, S. D. and H. H Lipowsky. Leukocyte-endothelium adhesion: Microhemodynamics in mesentery of the cat. Mi-crovasc.Res. 34:363–379, 1987.

    Google Scholar 

  15. Hsu, L. L. Mathematical Modeling of Blood Flow in Microcirculatory Networks-Relevance for Oxygen Transport. PhD thesis. New York: University of Rochester, 1988.

    Google Scholar 

  16. Intaglietta, M. Arteriolar vasomotion: implications for tissue ischaemia. Blood Vessels 28:1–7, 1991.

    Google Scholar 

  17. Johnson, P. C., and H. Wayland. Regulation of blood flow in single capillaries. Am.J.Physiol. 212:1405–1415, 1967.

    Google Scholar 

  18. Kiani, M. F. and A. G. Hudetz. A semi-empirical model of apparent blood viscosity as a function of vessel diameter and discharge hematocrit. Biorheology 28:65–73, 1991.

    Google Scholar 

  19. Kiani, M. F., A. R. Pries, L. L. Hsu, I. H. Sarelius, and G. R. Cokelet. Fluctuations in microvascular blood flow parameters caused by hemodynamic mechanisms. Am.J.Physiol. 266:H1822–H1828, 1994.

    Google Scholar 

  20. Krogh, A. Studies on the physiology of capillaries. II. The reactions to local stimuli of the blood vessels in the skin and web of the frog. J.Physiol. 55:414–422, 1921.

    Google Scholar 

  21. Minamiyama, M., and S. Hanai. Propagation properties of vasomotion at terminal arterioles and precapillaries in the rabbit mesentery. Biorheology 28:275–286, 1991.

    Google Scholar 

  22. Pries, A. R., K. Ley, M. Classen, and P. Gaehtgens. Red cell distribution at microvascular bifurcations. Microvasc.Res. 38:81–101, 1989.

    Google Scholar 

  23. Pries, A. R., T. W. Secomb, P. Gaehtgens, and J. F. Gross. Blood flow in microvascular networks. Experiments and simulation. Circ.Res. 67:826–834, 1990.

    Google Scholar 

  24. Pries, A. R., T. W. Secomb, T. Gessner, M. B. Sperandio, J. F. Gross, and P. Gaehtgens. Resistance to blood flow in microvessels in vivo. Circ.Res. 75:904–915, 1994.

    Google Scholar 

  25. Pries, A. R., D. Neuhaus, and P. Gaehtgens. Blood viscosity in tube flow: dependence on diameter and hematocrit. Am.J.Physiol. 263:H1770–H1778, 1992.

    Google Scholar 

  26. Rodgers, G. P., A. N. Schechter, C. T. Noguchi, H. G. Klein, A. W. Niehaus, and R. F. Bonner. Periodic microcirculatory flow in patients with sickle-cell disease. N.Engl.J.Med. 311:1534–1538, 1984.

    Google Scholar 

  27. Sainani, D., A. M. Barsoum, C. G. Ellis, M. F. Kiani, and G. R. Cokelet. Evidence of low dimensional chaos in a math-ematical model of microvascular blood flow in the rat mesentery. FASEB J. 8:A1056 (Abstract M147), 1994.

  28. Schechner, J. S. and I. M. Braverman. Synchronous vasomotion in the human cutaneous microvasculature periods evidence for central modulation. Microvasc.Res. 44:27–32, 1992.

    Google Scholar 

  29. Strogatz, S. H. Nonlinear Dynamics and Chaos. Reading, MA: Addison Wesley, 1994, p. 498.

    Google Scholar 

  30. Wayland, H. and P. C. Johnson. Erythrocyte velocity mea-surement in microvessels by a two slit photometric method. J.Appl.Physiol. 22:333–337, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carr, R.T., Lacoin, M. Nonlinear Dynamics of Microvascular Blood Flow. Annals of Biomedical Engineering 28, 641–652 (2000). https://doi.org/10.1114/1.1306346

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1306346

Navigation