Skip to main content
Log in

Reconstruction of Cardiac Ventricular Geometry and Fiber Orientation Using Magnetic Resonance Imaging

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An imaging method for the rapid reconstruction of fiber orientation throughout the cardiac ventricles is described. In this method, gradient-recalled acquisition in the steady-state (GRASS) imaging is used to measure ventricular geometry in formaldehyde-fixed hearts at high spatial resolution. Diffusion-tensor magnetic resonance imaging (DTMRI) is then used to estimate fiber orientation as the principle eigenvector of the diffusion tensor measured at each image voxel in these same hearts. DTMRI-based estimates of fiber orientation in formaldehyde-fixed tissue are shown to agree closely with those measured using histological techniques, and evidence is presented suggesting that diffusion tensor tertiary eigenvectors may specify the orientation of ventricular laminar sheets. Using a semiautomated software tool called HEARTWORKS, a set of smooth contours approximating the epicardial and endocardial boundaries in each GRASS short-axis section are estimated. These contours are then interconnected to form a volumetric model of the cardiac ventricles. DTMRI-based estimates of fiber orientation are interpolated into these volumetric models, yielding reconstructions of cardiac ventricular fiber orientation based on at least an order of magnitude more sampling points than can be obtained using manual reconstruction methods. © 2000 Biomedical Engineering Society.

PAC00: 8761-c, 8757Gg

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atalay, M. K., S. B. Reeder, E. A. Zerhouni, and J. R. Forder. Blood oxygenation dependence of T1 and T2 in the isolated, perfused rabbit heart at 4.7T. Magn. Reson. Med. 34:623–627, 1995.

    Google Scholar 

  2. Basser, P. J., J. Mattiello, and D. LeBihan. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson., Ser. B 103:247–254, 1994.

    Google Scholar 

  3. Chatham, J. C., S. Ackerman, and S. J. Blackband. High-resolution 1H NMR imaging of regional ischemia in the isolated perfused rabbit heart at 4.7 T. Magn. Reson. Med. 21:144–150, 1991.

    Google Scholar 

  4. Chen, P. S., Y. M. Cha, B. B. Peters, and L. S. Chen. Effects of myocardial fiber orientation on the electrical induction of ventricular fibrillation. Am. J. Physiol. 264:H1760–H1773, 1993.

    Google Scholar 

  5. Holmes, A. A., D. F. Scollan, and R. L. Winslow. Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn. Reson. Med. 44:157–161, 2000.

    Google Scholar 

  6. Hoppe, H., T. DeRose, T. DuChamp, J. McDonald, and W. Stuetzle. Piecewise smooth surface reconstruction from unor-ganized points. Comput. Graph. 26(2):71–78, 1992.

    Google Scholar 

  7. Hsu, E. W., A. L. Muzikant, S. A. Matulevicius, R. C. Pen-land, and C. S. Henriquez. Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. 274:H1627–H1634, 1998.

    Google Scholar 

  8. Hunter, P. J.. Proceedings: Development of a mathematical model of the left ventricle. J. Physiol. (London) 241:87P–88P, 1974.

    Google Scholar 

  9. Hunter, P. J., and B. H. Smaill. The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol. 52:101–164, 1988.

    Google Scholar 

  10. Hunter, P. J., P. M. Nielsen, B. H. Smaill, I. J. LeGrice, and I. W. Hunter. An anatomical heart model with applications to myocardial activation and ventricular mechanics. Crit. Rev. Biomed. Eng. 20:403–426, 1992.

    Google Scholar 

  11. Kanai, A., and G. Salama. Optical mapping reveals that re-polarization spreads anisotropically and is guided by fiber orientation in guinea pig hearts. Circ. Res. 77:784–802, 1995.

    Google Scholar 

  12. Koide, T., T. Narita, and S. Sumino. Hypertrophic cardiomy-opathy without asymmetric hypertrophy. Br. Heart J. 47:507–510, 1982.

    Google Scholar 

  13. LeGrice, I. J., P. J. Hunter, and B. H. Smaill. Laminar struc-ture of the heart: a mathematical model. Am. J. Physiol. 272:H2466–H2476, 1997.

    Google Scholar 

  14. LeGrice, I. J., B. H. Smaill, L. Z. Chai, S. G. Edgar, J. B. Gavin, and P. J. Hunter. Laminar structure of the heart:ventricular myocyte arrangement and connective tissue archi-tecture in the dog. Am. J. Physiol. 269(2Pt2):H571–H582, 1995.

    Google Scholar 

  15. Nielsen, P. M., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol. 260:H1365–H1378, 1991.

    Google Scholar 

  16. Reeder, S. B., M. K. Atalay, E. R. McVeigh, E. A. Zerhouni, and J. R. Forder. Quantitative cardiac perfusion: a noninva-sive spin-labeling method that exploits coronary vessel ge-ometry. Radiology 200:177–184, 1996.

    Google Scholar 

  17. Reese, T. G., R. M. Weisskoff, R. N. Smith, B. R. Rosen, R. E. Dinsmore, and V. J. Wedeen. Imaging myocardial fiber architecture in vivo with magnetic resonance. Magn. Reson. Med. 34:786–791, 1995.

    Google Scholar 

  18. Scollan, D., A. Holmes, R. L. Winslow, and J. Forder. His-tological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275(44):H2308–H2318, 1998.

    Google Scholar 

  19. Stejskal, E. O., and J. E. Tanner. Spin diffusion measure-ments: spin echoes in the presence of time-dependent field gradient. J. Chem. Phys. 42:288–292, 1965.

    Google Scholar 

  20. Streeter, D. Gross morphology and fiber geometry of the heart. In: Handbook of Physiology, The Cardiovascular Sys-tem I, edited by R. Berne, Bethesda, MD: American Physi-ological Society, 1979, Chap. 4, pp. 61–112.

    Google Scholar 

  21. Streeter, D., W. Powers, M. Ross, and F. Torrent-Guasp. Three dimensional fiber orientation in the mammalian left ventricular wall. In: Cardiovascular Systems Dynamics, edited by J. Bann, A. Noordegraaf, and J. Raines, Cambridge, MA: MIT Press, 1979, Chap. 9, pp. 73–84.

    Google Scholar 

  22. Streeter, D., H. Spotnitz, D. Patel, J. Ross, and E. Sonnen-blick. Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24:339–347, 1969.

    Google Scholar 

  23. Thickman, D. I., H. L. Kundel, and G. Wolf. Nuclear mag-netic resonance characteristics of fresh and fixed tissue: the effect of elapsed time. Radiology 148:183–185, 1983.

    Google Scholar 

  24. Vetter, F. J., and A. D. McCulloch. Three-dimensional analy-sis of regional cardiac function: a model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69:157–183, 1998.

    Google Scholar 

  25. Waldman, L. K., D. Nosan, F. Villarreal, and J. W. Covell. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res. 63:550–562, 1988.

    Google Scholar 

  26. Wickline, S. A., E. D. Verdonk, A. K. Wong, R. K. Shepard, and J. G. Miller. Structural remodeling of human myocardial tissue after infarction. Quantification with ultrasonic back-scatter. Circulation 85:259–268, 1992.

    Google Scholar 

  27. Xu, C., and J. L. Prince. Snakes, shapes and gradient vector flow. IEEE Trans. Image Process. 7:359–369, 1995.

    Google Scholar 

  28. Zhang, J. MR-based reconstruction of cardiac geometry, MS thesis, The Johns Hopkins University, Biomedical Engineer-ing, Baltimore, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scollan, D.F., Holmes, A., Zhang, J. et al. Reconstruction of Cardiac Ventricular Geometry and Fiber Orientation Using Magnetic Resonance Imaging. Annals of Biomedical Engineering 28, 934–944 (2000). https://doi.org/10.1114/1.1312188

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1312188

Navigation