Skip to main content
Log in

Model-Based Analysis of Optically Mapped Epicardial Activation Patterns and Conduction Velocity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A novel parametric model-based method was developed to quantify epicardial conduction patterns and velocity in an isolated Langendorff-perfused rabbit heart. The method incorporated geometric and anatomical features of the left and right ventricles into the analysis. Optical images of propagation were obtained using the voltage-sensitive dye DI-4-ANEPPS, and a high-speed digital camera. Activation maps were extracted from these images and interpolated onto a three-dimensional finite-element model of epicardial geometry and fiber structure. Activation time was expressed as a function of local parametric coordinates, and a conduction velocity vector field was computed from the gradient of the scalar field. Activation times measured using bipolar electrodes did not differ significantly from times measured using the optical mapping technique. The method was able to detect a 34% decrease in average fiber velocity and a 28% decrease in average cross-fiber velocity following the addition of 0.5 mM heptanol into the perfusate. The combination of optical mapping with a three-dimensional geometric model of the ventricles provides a new tool to quantify wave-front propagation relative to anatomy at a relatively high spatial resolution. © 2000 Biomedical Engineering Society.

PAC00: 8719Nn, 8719Hh, 8719Ff, 8762+n, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Baxter, W. T., J. M. Davidenko, L. M. Loew, J. P. Wuskell, and J. Jalife.Technical features of a CCD video camera system to record cardiac fluorescence data. Ann. Biomed. Eng.25:713–725, 1997.

    Google Scholar 

  2. Bayly, P. V., B. H. KenKnight, J. M. Rogers, R. E. Hillsley, R. E. Ideker, and W. M. Smith. Estimation of conduction velocity vector fields from epicardial mapping data. IEEE Trans. Biomed. Eng.45:563–571, 1998.

    Google Scholar 

  3. Cheng, Y., K. Mowrey, I. R. Efimov, D. R. Van Wagoner, P. J. Tchou, and T. N. Mazgalev. Effects of 2,3-butanedione monoxime on atrial-atrioventricular nodal conduction in isolated rabbit heart. J. Cardiovasc. Electrophysiol. 8:790–802, 1997.

    Google Scholar 

  4. Costa, K. D., P. J. Hunter, J. S. Wayne, L. K. Waldman, J. M. Guccione, and A. D. McCulloch. A three-dimensional finite-element method for large elastic deformations of ventricular myocardium: II—Prolate spheroidal coordinates. J. Biomech. Eng.118:464–472, 1996.

    Google Scholar 

  5. de Bakker, J.M. T., R. N. W. Hauer, and T. A. Simmers. Activation mapping: Unipolar versus bipolar recording. In: Cardiac Electrophysiology: From Cell to Bedside, edited by D. P. Zipes and J. Jalife. Philadelphia: Saunders, 1995, pp. 1068–1078.

    Google Scholar 

  6. Dillon, S. M., M. A. Allessie, P. C. Ursell, and A. L. Wit. Influences of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ. Res.63:182–206, 1988.

    Google Scholar 

  7. Efimov, I. R., D. T. Huang, J. M. Rendt, and G. Salama. Optical mapping of repolarization and refractoriness from intact hearts. Circulation90:1469–1480, 1994.

    Google Scholar 

  8. Girouard, S. D., K. R. Laurita, and D. S. Rosenbaum. Unique properties of cardiac action potentials recorded with voltagesensitive dyes. J. Cardiovasc. Electrophysiol.7:1024–1038, 1996.

    Google Scholar 

  9. Gray, R. A., J. Jalife, A. Panfilov, W. T. Baxter, C.Cabo, J. M. Davidenko, and A. M. Pertsov. Nonstationary vortexlike reentrant activity as a mechanism of polymorphic ventricular tachycardia in the isolated rabbit heart. Circulation91:2454–2469, 1995.

    Google Scholar 

  10. Gray, R. A., A. M. Pertsov, and J. Jalife. Spatial and temporal organization during cardiacfibrillation. Nature (London) 392:75–78, 1998.

    Google Scholar 

  11. Knisley, S. B. Transmembranevoltage changes during unipolar stimulation of rabbit ventricle. Circ. Res.77:1229–1239, 1995.

    Google Scholar 

  12. 91 Model-Based Activation Mapping

  13. Knisley, S. B., and T. C. Baynham. Line stimulationparallel to myofibers enhances regional uniformity of transmembrane voltage changes in rabbit hearts. Circ. Res.81:229–241, 1997.

    Google Scholar 

  14. Liu, Y., C. Cabo, R. Salomonsz, M. Delmar, J. Davidenko, and J. Jalife. Effects of diacetyl monoxime on the electrical properties of sheep and guinea pig ventricular muscle. Cardiovasc. Res.27:1991–1997, 1993.

    Google Scholar 

  15. Mazhari, R., J. H. Omens, L. K. Waldman,and A. D. Mc-Culloch. Regional myocardial perfusion and mechanics: a model-based method of analysis. Ann. Biomed. Eng.26:743–755, 1998.

    Google Scholar 

  16. Meier, G. D., M. C. Ziskin, W. P. Santamore, and A. A. Bove. Kinematics of the beating heart. IEEE Trans. Biomed. Eng.27:319–329, 1980.

    Google Scholar 

  17. Ndrepepa, G., E. B. Caref, H. Yin, N. el-Sherif, and M. Restivo. Activationtime determination by high-resolution unipolar and bipolar extracellular electrograms in the canine heart. J. Cardiovasc. Electrophysiol.6:174–188, 1995.

    Google Scholar 

  18. Nielsen, P. M., I. J. Le Grice, B. H. Smaill, and P. J. Hunter. Mathematical model of geometry and fibrous structure of the heart. Am. J. Physiol.260:1365–1378, 1991.

    Google Scholar 

  19. Reiter, M. J., M. Landers, Z. Zetelaki, C. J. H. Kirchhof, and M. A. Allessie. Electrophysiological effects of acute dilation in the isolated rabbit heart. Cycle length-dependent effects on ventricular refractoriness and conduction velocity. Circulation96:4050–4056, 1997.

    Google Scholar 

  20. Rousakov, S. V., J. P. Wikswo, and R. R. Aliev. Wavevector analysis ofcardiac activation patterns. Proceedings of the First Joint BMES/EMBS Conference, Atlanta, GA 13–16 October1999, p. 161.

  21. Salama, G., A. Kanai, and I. R. Efimov. Subthresholdstimulation of Purkinje fibers interrupts ventricular tachycardia in intact hearts. Experimental study with voltage-sensitive dyes and imaging techniques. Circ. Res.74:604–619, 1994.

    Google Scholar 

  22. Smeets, J. L.,M. A. Allessie, W. J. Lammers, F. I. Bonke, and J. Hollen. The wavelength of the cardiac impulse and reentrant arrhythmias in isolated rabbit atrium. The role of heart rate, autonomic transmitters, temperature, and potassium. Circ. Res.58:96–108, 1986.

    Google Scholar 

  23. Streeter, Jr., D. D., and W. T. Hanna.Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and wall geometry. Circ. Res.33:639–655, 1973.

    Google Scholar 

  24. Vetter, F. J., and A. D. McCulloch. Three-dimensional analysis of regional cardiac function: A model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol.69:157–183, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, D., Omens, J.H. & McCulloch, A.D. Model-Based Analysis of Optically Mapped Epicardial Activation Patterns and Conduction Velocity. Annals of Biomedical Engineering 28, 1085–1092 (2000). https://doi.org/10.1114/1.1314891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1314891

Navigation