Skip to main content
Log in

A Mathematical Model for Chemoattractant Gradient Sensing Based on Receptor-Regulated Membrane Phospholipid Signaling Dynamics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The crawling movement of cells in response to a chemoattractant gradient is a complex process requiring the coordination of various subcellular activities. Although a complete description of the mechanisms underlying cell movement remains elusive, the very first step of directional sensing, enabling the cell to perceive the imposed gradient, is becoming more transparent. A fundamental problem of directional sensing is its exquisite sensitivity. Even in the presence of relatively shallow chemoattractant gradients, cell projections are extended precisely in the region exposed to the highest chemoattractant concentration. This reflects the existence of a mechanism for amplifying the external signal. Recent experiments have identified a potential candidate for the seat of this amplification—membrane phosphoinositides such as PI4,5P2 and PI3,4,5P3 appear to be the first components of the signal transduction pathway to be amplified. Perturbing the cell with various chemoattractant gradients reveals a rich spectrum of phosphoinositide dynamics (Parent, C. A., and P. N. Devreotes. Science 284:765, 1999). The goal of this work is to develop a mathematical model of these phosphoinositide dynamics. Specifically, we address the following questions: (a) Which signaling pathway could lead to the localized accumulation of membrane phosphoinositides? (b) Why is this accumulation independent of the slope and mean value of the chemoattractant gradient? The model is based on the phosphoinositide cycle that transfers phosphoinositides between the plasma membrane and endoplasmic reticulum. We show that a mathematical model taking due account of receptor desensitization and the reaction-diffusion processes of the phosphoinositide cycle captures many of the experimentally observed dynamics. Having shown the plausibility of the model with respect to directional sensing, we discuss its implications for lamellipod extension, the process that follows directional sensing. © 2001 Biomedical Engineering Society.

PAC01: 8717Jj, 8717Aa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson, Molecular Biology of the Cell, 3rd ed. New York: Garland, 1994.

    Google Scholar 

  2. Albritton, N. L., T. Meyer, and L. Stryer. Science258:1812, 1992.

    Google Scholar 

  3. Alon, U., M. G. Surette, N. Barkai, and S. Leibler. Nature (London)397:168, 1999.

    Google Scholar 

  4. Barkai, N.and S. Leibler. Nature (London)387:913, 1997.

    Google Scholar 

  5. Berridge, M. J.Nature (London)361:315, 1993.

    Google Scholar 

  6. Berridge, M. J., and R. F. Irvine. Nature (London)341:197, 1989.

    Google Scholar 

  7. Borisy, G. G.and T. M. Svitkina. Curr. Opin. Cell Biol.12:91, 2000.

    Google Scholar 

  8. Botelho, R. J., M. Teruel, R. Dierkman, R. Anderson, A. Wells, J. D. York, T. Meyer, and S. Grinstein. J. Cell Biol.151:1353, 2000.

    Google Scholar 

  9. Chahine, J. M. E. H., S. Cribier, and P. F. Devaux. Proc. Natl. Acad. Sci. U.S.A.90:447, 1993.

    Google Scholar 

  10. Coates, T., R. Watts, R. Hartman, and T. Howard. J. Cell Biol.117:765, 1992.

    Google Scholar 

  11. Cockcroft, S.Chem. Phys. Lipids98:23, 1999.

    Google Scholar 

  12. Devreotes, P. N.and J. A. Sherring. J. Biol. Chem.260:6378, 1985.

    Google Scholar 

  13. Eddy, R. J., L. M. Pierini, F. Matsumura, and F. R. Maxfield. J. Cell. Sci.113:1287, 2000.

    Google Scholar 

  14. Firtel, R. A.and C. Y. Chung. BioEssays22:603, 2000.

    Google Scholar 

  15. Fruman, D. A., R. E. Meyers, and L. C. Cantley. Annu. Rev. Biochem.67:481, 1998.

    Google Scholar 

  16. Gierer, A.and H. Meinhardt. Kybernetik12:30, 1972.

    PubMed  Google Scholar 

  17. Haugh, J. M., F. Codazzi, M. Teruel, and T. Meyer. J. Cell Biol.151:1269, 2000.

    Google Scholar 

  18. Haugh, J. M., A. Wells, and D. A. Lauffenburger. Biotechnol. Bioeng.70:225, 2000.

    Google Scholar 

  19. Helmkamp, G. M., In: Intracellular Transfer of Lipid Molecules, Subcellular Biochemistry Vol. 16, edited by H. J. Hilderson. (New York, Plenum, 1990), Chap. 6, pp. 129–174.

    Google Scholar 

  20. Hinchliffe, K.Curr. Biol.10:R104, 2000.

    Google Scholar 

  21. Honda, A., M. Nogami, T. Yokozeki, M. Yamazaki, H. Nakamura, H. Watanabe, K. Kawamoto, K. Nakayama, A. J. Morris, M. A. Frohman, and Y. Kanaho. Cell99:521, 1999.

    Google Scholar 

  22. Janmey, P. A.Annu. Rev. Physiol.56:169, 1994.

    Google Scholar 

  23. Jin, T., N. Zhang, Y. Long, C. A. Parent, and P. N. Devreotes. Science287:1034, 2000.

    Google Scholar 

  24. Kerner, B. S., and V. V. Osipov. Autosolitons: A New Approach to Problems of Self-Organization and Turbulence, 1st ed. Dordrecht, Kluwer, 1994.

    Google Scholar 

  25. Kjöller, L.and A. Hall. Exp. Cell Res.253:166, 1999.

    Google Scholar 

  26. Lauffenburger, D. A.and A. F. Horwitz. Cell84:359, 1996.

    PubMed  Google Scholar 

  27. Lauffenburger, D. A., and J. J. Linderman. Receptors: Models for Binding, Trafficking and Signaling, 1st ed. New York, Oxford University Press, 1993.

    Google Scholar 

  28. Lawson, M. A.and F. R. Maxfield. Nature (London)377:75, 1995.

    Google Scholar 

  29. Lemmon, M. A., M. Falasca, K. M. Ferguson, and J. Schlessinger. Trends Cell Biol.7:237, 1997.

    Google Scholar 

  30. Marks, P. W.and F. R. Maxfield. J. Cell Biol.110:43, 1990.

    Google Scholar 

  31. Meili, R., C. Ellsworth, S. Lee, T. B. K. Reddy, H. Ma, and R. A. Firtel. EMBO J.112:2867, 1999.

    Google Scholar 

  32. Meinhardt, H.J. Cell. Sci.112:2867, 1999.

    Google Scholar 

  33. Monaco, M. E.and J. R. Adelson. Biochem. J.279:337, 1991.

    Google Scholar 

  34. Moritz, A., P. N. E. Graan, W. H. Gispen, and K. W. A. Wirtz. J. Biol. Chem.267:7207, 1992.

    Google Scholar 

  35. Mullins, R. D.Curr. Opin. Cell Biol.12:91, 2000.

    Google Scholar 

  36. NAG Fortran Library Introductory Guide, Mark 18, Oxford, UK: Numerical Algorithms Group, 1999.

  37. Parent, C. A.and P. N. Devreotes. Science284:765, 1999.

    PubMed  Google Scholar 

  38. Parent, C. A., B. J. Blacklock, W. M. Froelich, D. B. Murphy, and P. N. Devreotes. Cell95:81, 1998.

    PubMed  Google Scholar 

  39. Servant, G., O. D. Weiner, E. R. Neptune, J. W. Sedat, and H. R. Bourne. Mol. Biol. Cell10:1163, 1999.

    Google Scholar 

  40. Servant, G., O. D. Weiner, P. Herzmark, T. Balla, J. W. Sedat, and H. R. Bourne. Science287:1037, 2000.

    Google Scholar 

  41. Tall, E. G., I. Spector, S. N. Pentyala, I. Bitter, and M. J. Rebecchi. Curr. Biol.10:743, 2000.

    Google Scholar 

  42. Tranquillo, R. T., D. A. Lauffenburger, and S. H. Zigmond. J. Cell Biol.106:303, 1988.

    Google Scholar 

  43. Tolias, K. F.et al.Curr. Biol.10:153, 2000.

    Google Scholar 

  44. Várnai, P.and T. Balla. J. Cell Biol.143:501, 1998.

    Google Scholar 

  45. Willars, G. B., S. R. Nahorski, and R. A. J. Challiss. J. Biol. Chem.273:5037, 1998.

    Google Scholar 

  46. Xiao, Z., N. Zhang, D. B. Murphy, and P. N. Devreotes. J. Cell Biol.139:365, 1997.

    Google Scholar 

  47. Zigmond, S. H.J. Cell Biol.150:F117, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narang, A., Subramanian, K.K. & Lauffenburger, D.A. A Mathematical Model for Chemoattractant Gradient Sensing Based on Receptor-Regulated Membrane Phospholipid Signaling Dynamics. Annals of Biomedical Engineering 29, 677–691 (2001). https://doi.org/10.1114/1.1385805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1385805

Navigation