Skip to main content

Advertisement

Log in

Investigation of the Morphology of the Lacunocanalicular System of Cortical Bone Using Atomic Force Microscopy

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical loading has been implicated as a powerful driving mechanism for interstitial fluid flow through bone. However, little information is available with regard to the morphology of bone fluid spaces, e.g., the canalicular wall, which would be expected to dictate the type of flow regime developing in the lacunocanalicular system under mechanical loads. The purpose of this study was to examine the fine structure of the lacunocanalicular system in cortical bone using atomic force microscopy (AFM), resin casting methods, and selective etching of the specimen surface. A resincast replica of the canalicular wall was produced and surface morphology and dimensions were observed using AFM in tapping mode. Material contrast was obtained using surface potential measurements. A striped pattern perpendicular to the canaliculus long axis with a periodicity of 125 nm dominated the structure of the canalicular wall; it is likely that this was caused by the imprint of collagen fibrils arranged in parallel, lining the canaliculus wall. The largest dimension measured for canalicular diameter was on the order of 500 nm. The regular dips and ridges caused by the collagen that lines the wall are a source of roughness which may influence shear stresses imparted by the fluid on the cell surface as well as mixing of solutes within the lacunocanalicular system. In addition, the lacunocanalicular wall lining is likely to affect physicochemical interactions between the fluid and bone matrix. This has important implications for modeling and understanding the microfluid mechanics and rheology of the fluid-filled lacunocanalicular network. © 2001 Biomedical Engineering Society.

PAC01: 8719Tt, 8764Dz

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Atkinson, P. J., and A. S. Hallsworth. The spatial structure of bone. In: Progress in Anatomy, edited by R. J. Harrision and V. Navaratman. Cambridge: Cambridge University Press, 1982, Vol. 2, pp. 179–199.

    Google Scholar 

  2. Bagi, A., M. Gandolfi, N. Roveri, and G. Valdre. In vitro calcified tendon collagen: An atomic force and scanning electron microscopy investigation. Biomaterials 18:657–665, 1997.

    Google Scholar 

  3. Bonucci, E., and G. Gherardi. Osteocyte ultrastructure in renal osteodystrophy. Virchows Arch. A Pathol. Anat. Histol. 373:213–231, 1977.

    Google Scholar 

  4. Burger, E. H., and J. Klein-Nulend. Mechanotransduction in bone-Role of the lacunocanalicular network. FASEB J. 13:S101-S112, 1999.

    Google Scholar 

  5. Castenholz, A. Interpretation of structural patterns appearing on corrosion casts of small blood and initial lymphatic vessels. Scanning Microsc. 3:315–325, 1989.

    Google Scholar 

  6. Castenholz, A. The outer surface morphology of blood vessels as revealed in scanning electron microscopy in resin cast, noncorroded tissue specimens. Scan. Electron Microsc. 4:1955–1962, 1983.

    Google Scholar 

  7. Cooper, R. R., J. W. Milgram, and R. A. Robinson. Morphology of the osteon. An electron microscopic study. J. Bone Jt. Surg. 48-A:1239–1271, 1966.

    Google Scholar 

  8. Cowin, S. C., S. Weinbaum, and Y. Zeng. A case for bone canaliculi as the anatomical site of strain generated streaming potentials. J. Biomech. 28:1281–1297, 1995.

    Google Scholar 

  9. Curtis, T. A., S. H. Ashrafi, and D. F. Weber. Canalicular communication in the cortices of human long bones. Anat. Rec. 212:336–344, 1985.

    PubMed  Google Scholar 

  10. Giraud-Guille, M. M. Twisted plywood architecture of collagen fibrils in human compact bone osteons. Calcif. Tissue Int. 42:167–180, 1988.

    Google Scholar 

  11. Guzelsu, N., and W. R. Walsh. Streaming potential of intact wet bone. J. Biomech. 23:673–685, 1990.

    Google Scholar 

  12. Hein, H.-J., and L. Weisser. The presentation of hydroylapatite in bone by scanning probe microscopy. J. Biomech. 31:22, 1998.

    Google Scholar 

  13. Ismail, O. S., and D. F. Weber. Light and scanning electron microscopic observations of the canalicular system in human cellular cementum. Anat. Rec. 222:121–127, 1988.

    Google Scholar 

  14. Jacobs, H. O., H. F. Knapp, S. Müller, and A. Stemmer. Surface potential mapping: A qualitative material contrast in SPM. Ultramicroscopy 69:39–49, 1997.

    Google Scholar 

  15. Jacobs, H. O., H. F. Knapp, and A. Stemmer. Practical aspects of kelvin probe microscopy. Rev. Sci. Instrum. 70:1756–1760, 1999.

    Google Scholar 

  16. Knapp, H. F., G. C. Reilly, A. Stemmer, P. Niederer, and M. L. Knothe Tate. Development of preparation methods for and insights obtained from atomic force microscopy of fluid spaces in cortical bone. Scanning (in press).

  17. Knothe Tate, M. L., P. Niederer, and U. Knothe. In vivo tracer transport through the lacunocanalicular system of rat bone in an environment devoid of mechanical loading. Bone 22:107–117, 1998.

    Google Scholar 

  18. Knothe Tate, M. L., A. Tami, P. Nasser, R. Steck, and M. B. Schaffler. Permeability characteristics of different molecular tracers in loaded and unloaded bone. Trans. Orthopaed. Res. Soc. 26:138, 2001.

    Google Scholar 

  19. Knothe Tate, M. L., and U. Knothe. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33:247–254, 2000.

    Google Scholar 

  20. Knothe Tate, M. L., R. Steck, M. R. Forwood, and P. Niederer. In vivo demonstration of load-induced fluid flow in the rat tibia and its potential implications for processes associated with functional adaptation. J. Exp. Biol. 203:2737–2745, 2000.

    Google Scholar 

  21. Knothe Tate, M. L. Interstitial fluid flow. In: Bone Biomechanics Handbook, edited by S. C. Cowin. New York: CRC, 2001, pp. 22–1-22-9.

    Google Scholar 

  22. Kratky, R. G., C. M. Zeindler, D. K. C. Lo, and M. R. Roach. Quantitative measurement from vascular casts. Scanning Microsc. 3:937–943, 1989.

    Google Scholar 

  23. Lees, S., K. S. Prostak, V. K. Ingle, and K. Kjoller. The loci of mineral in turkey leg tendon as seen by atomic force microscope and electron microscopy. Calcif. Tissue Int. 55:180–189, 1994.

    Google Scholar 

  24. Luk, S. C., C. Nopajaroonsri, and G. T. Simon. The ultrastructure of cortical bone in young adult rabbits. J. Ultrastruct. Res. 46:184–205, 1974.

    Google Scholar 

  25. Marti, O., H. F. Knapp, M. Radmacher, M. Fritz, J. P. Cleveland, P. K. Hansma, and J. Colchero. Module 1.3.2, AFM signals and imaging modes. In: Procedures in Scanning Probe Microscopies, edited by R. J. Colton, A. Engel, J. E. Frommer, H. E. Gaub, A. A. Gewirth, R. Guckenberger, J. Rabe, W. M. Heckl, and B. Parkinson. Chichester: Wiley, 1998, pp. 105–121.

    Google Scholar 

  26. Martin, D. M., A. S. Hallsworth, and T. Buckley. A method for the study of internal spaces in hard tissue matrices by SEM, with special reference to dentine. J. Microsc. 112:345–352, 1978.

    Google Scholar 

  27. Nicolella, D. P., D. E. Moravits, A. J. Siller-Jackson, R. J. Railsback, S. F. Timmons, K. J. Jepsen, D. T. Davy, and J. Lankford. Ultrastructural characterization of damaged cortical bone using atomic force microscopy. In: Proceedings of the Bioengineering Conference BED-Vol. 42, edited by V. K. Goel, R. L. Spiker, G. A. Ateshian, and L. J. Soslowsky. New York: ASME, 1999, pp. 319–320.

    Google Scholar 

  28. Ráliš, Z. A., and I. G. Turner. Two phases of the bone mineral as revealed by the high-resolution scanning electron microscope on ion-etched bone surfaces and as seen on surfaces untreated and chemically etched. Microsc. Acta 84:385–400, 1981.

    Google Scholar 

  29. Raspanti, M., A. Alessandrini, V. Ottani, and A. Ruggeri. Direct visualization of collagen-bound proteoglycans by tappingmode atomic force microscopy. J. Struct. Biol. 119:118–122, 1997.

    Google Scholar 

  30. Sauren, Y. M. H. F., R. H. P. Mieremet, C. G. Groot, and J. P. Scherft. An electron microscope study of the presence of proteoglycans in the mineralized matrix of rat and human compact lamellar bone. Anat. Rec. 232:36–44, 1992.

    Google Scholar 

  31. Scherft, J. P. The lamina limitans of the organic matrix of calcified cartilage and bone. J. Ultrastruct. Res. 38:318–331, 1972.

    Google Scholar 

  32. Sims, P. A., and R. M. Albrecht. Corrosion casting in the reproduction of the microsurface topography of fibrillar collagen. Microsc. Microanal. 5:99–105, 1999.

    Google Scholar 

  33. Skerry, T. M., R. Suswillo, A. J. El Haj, N. N. Ali, R. A. Dodds, and L. E. Lanyon. Load-induced proteoglycan orientation in bone tissue in vivo and in vitro. Calcif. Tissue Int. 46:318–326, 1990.

    Google Scholar 

  34. Takagi, M., M. Maeno, A. Kagami, Y. Takahashi, and K. Otsuka. Biochemical and immunocytochemical characterization of mineral binding proteoglycans in rat bone. J. Histochem. Cytochem. 39:41–50, 1991.

    PubMed  Google Scholar 

  35. Tao, N. J., S. M. Lindsay, and S. Lees. Measuring the microelastic properties of biological material. Biophys. J. 63:1165–1169, 1992.

    Google Scholar 

  36. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339–360, 1994.

    Google Scholar 

  37. Wiesmann, H.-P., L. Chi, U. Stratmann, U. Plate, H. Fuchs, U. Joos, and H. J. Höhling. Sutural mineralization of rat calvaria characterized by atomic force microscopy and transmission electron microscopy. Cell Tissue Res. 294:93–97, 1998.

    Google Scholar 

  38. You, J., C. E. Yellowley, H. J. Donahue, Y. Zhang, Q. Chen, and C. R. Jacobs. Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J. Biomed. Eng. 122:387–393, 2000.

    Google Scholar 

  39. You L., S. C. Cowin, and S. Weinbaum. Strain amplification in the bone mechanosensory system. In: Advances in Bioengineering BED-Vol. 43, edited by J. S. Wayne. New York: ASME, 1999, pp. 171–172.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, G.C., Knapp, H.F., Stemmer, A. et al. Investigation of the Morphology of the Lacunocanalicular System of Cortical Bone Using Atomic Force Microscopy. Annals of Biomedical Engineering 29, 1074–1081 (2001). https://doi.org/10.1114/1.1424910

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1424910

Navigation