Skip to main content
Log in

Elastodynamics and Arterial Wall Stress

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent advances in molecular and cell biology have emphasized the fundamental importance of mechanical factors in regulating the structure and function of cells and extracellular matrix in the vasculature. Consequently, there is an ever-greater motivation to calculate accurately the stress and strain fields in the arterial wall and how they change with disease, injury, and clinical treatment. Although there is an extensive literature on arterial mechanics, our understanding is still far from complete. In this paper, we review some of the salient findings with regard to wall properties, suggest some possible improvements in the calculation of wall stress, and identify some unresolved problems for further research. © 2002 Biomedical Engineering Society.

PAC2002: 8719Rr, 8719Uv, 8719Xx, 8716Xa

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brant, A. M., M. F. Teodori, R. L. Kormos, and H. S. Borovetz. Effect of variations of pressure and flow on the geometry of isolated canine carotid arteries. J. Biomech. 20:831–838, 1987.

    Google Scholar 

  2. Carver, W., M. L. Nagpal, M. Nachtigal, T. K. Borg, and L. Terracio. Collagen expression in mechanically stimulated cardiac fibroblasts. Circ. Res. 69:116–122, 1991.

    Google Scholar 

  3. Chuong, C. J., and Y. C. Fung. Three-dimensional stress distribution in arteries. ASME J. Biomech. Eng. 105:268–274, 1983.

    Google Scholar 

  4. Cleave, J., and M. R. Roach. Comparison of longitudinal elastic properties of proximal and distal strips of aorta-branch junctions from the abdominal aorta of sheep. Can. J. Physiol. Pharmacol. 61:614–618, 1983.

    Google Scholar 

  5. Davies, P. F. Flow-mediated endothelial mechanotransduction. Physiol. Rev. 75:519–560, 1995.

    Google Scholar 

  6. Delfino, A., N. Stergiopulos, J. E. Moore, and J.-J. Meister. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomech. 30:777–786, 1997.

    Google Scholar 

  7. Demiray, H., and R. P. Vito. On large periodic motions of arteries. J. Biomech. 16:643–648, 1983.

    Google Scholar 

  8. Duriaswamy, N. Mechanical properties of normotensive and hypertensive carotid and coronary arteries and their quantification. MS thesis, Texas A & M University, College Station, TX 2000.

    Google Scholar 

  9. Dzau, V. J., and G. H. Gibbons. Vascular remodeling: Mechanisms and implications. J. Cardiovasc. Pharmacol. 21:S1–S5, 1993.

    Google Scholar 

  10. Eringen A. C., and E. S. Suhubi. Elastodynamics. I-Finite Motions. New York: Academic, 1974, p. 150.

    Google Scholar 

  11. Greenwald, S. E., J. E. Moore, Jr., A. Rachev, T. P. C. Kane, and J.-J. Meister. Experimental investigation of the distribution of residual strains in the artery wall. J. Biomech. Eng. 119:438–444, 1997.

    Google Scholar 

  12. Hayashi, K., and Y. Imai. Tensile property of atheromatous plaque and an analysis of stress in atherosclerotic wall. J. Biomech. 30:573–579, 1997.

    Google Scholar 

  13. Holzapfel, G. A., and H. W. Weizsacker. Biomechanical behavior of the arterial wall and its numerical characterization. Comput. Biol. Med. 28:377–392, 1998.

    Google Scholar 

  14. Humphrey, J. D., T. Kang, P. Sakarda, and M. Anjanappa. Computer-aided vascular experimentation: A new electromechanical test system. Ann. Biomed. Eng. 21:33–43, 1993.

    Google Scholar 

  15. Humphrey, J. D. Arterial wall mechanics: Review and directions. Crit. Rev. Biomed. Eng. 23:1–162, 1995.

    Google Scholar 

  16. Humphrey, J. D. An evaluation of pseudoelastic predictors used in arterial mechanics. ASME J. Biomech. Eng. 121:259–262, 1999.

    Google Scholar 

  17. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, 2002.

    Google Scholar 

  18. Kang T., and J. D. Humphrey. Finite deformation of an inverted artery. In: 1991 ASME Advances in Bioengineering, edited by R. Vanderby, New York: ASME, 1991.

    Google Scholar 

  19. Lee, R. T., A. J. Grodzinsky, E. H. Frank, R. D. Kamm, and F. J. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770, 1991.

    Google Scholar 

  20. Lee, R. T., F. J. Schoen, H. M. Loree, M. W. Lark, and P. Libby. Circumferential stress and matrix metalloproteinase 1 in human coronary atherosclerosis. Arterioscler., Thromb., Vasc. Biol. 16:1070–1073, 1996.

    Google Scholar 

  21. Lin, D. H. S., and F. C. P. Yin. A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. ASME J. Biomech. Eng. 120:504–517, 1998.

    Google Scholar 

  22. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.

    Google Scholar 

  23. Malek, A., and S. Izumo. Physiological fluid shear stress causes downregulation of endothelin-1 mRNA in bovine aortic endothelium. Am. J. Physiol. 263:C389–C396, 1992.

    Google Scholar 

  24. Milnor, W. R. Hemodynamics, 2nd ed. Baltimore: Williams and Wilkins, 1989.

    Google Scholar 

  25. Misra, J. C., and S. I. Singh. A large deformation analysis for aortic walls under a physiological loading. Int. J. Eng. Sci. 21:1193–1202, 1983.

    Google Scholar 

  26. Osol, G. Mechanotransduction by vascular smooth muscle. J. Vasc. Res. 32:275–292, 1995.

    Google Scholar 

  27. Rachev, A., and K. Hayashi. Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries. Ann. Biomed. Eng. 27:459–468, 1999.

    Google Scholar 

  28. Rhodin, J. A. G. Architecture of the vessel wall. In: Handbook of Physiology, edited by R. M. Berne. Bethesda, MD: American Physiological Society, 1979, Sec. 2, Vol. 2.

    Google Scholar 

  29. Sottiurai, V. S., P. Kollros, S. Glagov, C. K. Zarins, and M. B. Mathews. Morphologic alteration of cultured arterial smooth muscle cells by cyclic stretching. J. Surg. Res. 35:490–497, 1983.

    Google Scholar 

  30. Strumpf, R. K., J. D. Humphrey, and F. C. P. Yin. Biaxial mechanical properties of passive and tetanized canine diaphragm. Am. J. Physiol. 265:H469–H475, 1993.

    Google Scholar 

  31. Taber, L. A., and J. D. Humphrey. Stress-modulated growth, residual stress, and vascular heterogeneity. ASME J. Biomech. Eng. 123:528–535, 2001.

    Google Scholar 

  32. Takamizawa, K., and K. Hayashi. Strain energy density function and uniform strain hypothesis for arterial mechanics. J. Biomech. 20:7–17, 1987.

    Google Scholar 

  33. Topoleski, L. D. T., N. V. Salunke, J. D. Humphrey, and W. J. Mergner. Composition-and history-dependent radial compressive behavior of human atherosclerotic plaques. J. Biomed. Mater. Res. 35:117–127, 1997.

    Google Scholar 

  34. Tozzi, P., D. Hayoz, C. Oedman, I. Mallabiabarrena, and L. K. von Segesser. Systolic axial artery length reduction: An overlooked phenomenon in vivo. Am. J. Physiol. 280:H2300–H2305, 2001.

    Google Scholar 

  35. Vaishnav, R. N., J. T. Young, J. T., and D. J. Patel. Distribution of stresses and strain-energy density through the wall thickness in a canine aortic segment. Circ. Res. 32:577–583, 1973.

    Google Scholar 

  36. von Maltzahn, W. W., R. G. Warriyar, and W. F. Keitzer. Experimental measurements of elastic properties of media and adventitia of bovine carotid arteries. J. Biomech. 17:839–847, 1984.

    Google Scholar 

  37. Wilson, E., Q. Mai, K. Sudhir, R. H. Weiss, and H. E. Ives. Mechanical strain induces growth of vascular smooth muscle cells via autocrine action of PDGF. J. Cell Biol. 123:741–747, 1993.

    Google Scholar 

  38. Zarins, C. K., E. Weisenberg, G. Kolettis, R. Stankunavicius, and S. Glagov. Differential enlargement of artery segments in response to enlarging atherosclerotic plaques. J. Vasc. Surg. 7:386–394, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Humphrey, J.D., Na, S. Elastodynamics and Arterial Wall Stress. Annals of Biomedical Engineering 30, 509–523 (2002). https://doi.org/10.1114/1.1467676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1467676

Navigation