Skip to main content
Log in

Modeling of Nonlinear Physiological Systems with Fast and Slow Dynamics. II. Application to Cerebral Autoregulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dynamic autoregulation of cerebral hemodynamics in healthy humans is studied using the novel methodology of the Laguerre–Volterra network for systems with fast and slow dynamics (Mitsis, G. D., and V. Z. Marmarelis, Ann. Biomed. Eng. 30:272–281, 2002). Since cerebral autoregulation is mediated by various physiological mechanisms with significantly different time constants, it is used to demonstrate the efficacy of the new method. Results are presented in the time and frequency domains and reveal that cerebral autoregulation is a nonlinear and dynamic (frequency-dependent) system with considerable nonstationarities. Quantification of the latter reveals greater variability in specific frequency bands for each subject in the low and middle frequency range (below 0.1 Hz). The nonlinear dynamics are prominent also in the low and middle frequency ranges, where the frequency response of the system exhibits reduced gain. © 2002 Biomedical Engineering Society.

PAC2002: 8719Uv, 8719La, 8710+e

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aaslid, R. K., W. Lindengaard, W. Sorterberg, and H. Nornes. Cerebral autoregulation dynamics in humans. Stroke 20:45–52, 1989.

    Google Scholar 

  2. Chon, K. H., Y. M. Chen, N. H. Holstein-Rathlou, and V. Z. Marmarelis. Nonlinear system analysis of renal autoregulation in normotensive and hypertensive rats. IEEE Trans. Biomed. Eng. 45:342–353, 1998.

    Google Scholar 

  3. Chon, K. H., Y. M. Chen, V. Z. Marmarelis, D. J. Marsh, and N. H. Holstein-Rathlou. Detection of interactions between myogenic and TGF mechanisms using nonlinear analysis. Am. J. Physiol. 267:F160–F173, 1994.

    Google Scholar 

  4. Diehl, R. R., D. Linden, D. Lucke, and P. Berlit. Phase relationship between cerebral blood flow velocity and blood pressure. A clinical test of autoregulation. Stroke 26:1801–1804, 1995.

    Google Scholar 

  5. Faraci, F. M., and D. D. Heistad. Regulation of the cerebral circulation: Role of endothelium and potassium channels. Physiol. Rev. 78:53–97, 1998.

    Google Scholar 

  6. Giller, C. A. The frequency-dependent behavior of cerebral autoregulation. Neurosurgery 27:362–368, 1990.

    Google Scholar 

  7. Heistad, D. D., and H. A. Kontos. Cerebral circulation. In: Handbook of Physiology. The Cardiovascular System. Peripheral Circulation and Organ Blood Flow. Bethesda, MD: Am. Physiol. Soc., 1983, Sec. 2, Vol. III, Part 1, Chap. 5, pp. 137–182.

    Google Scholar 

  8. Kuo, T. B. J., C. M. Chern, W. Y. Sheng, W. J. Wong, and H. H. Hu. Frequency domain analysis of cerebral blood flow velocity and its correlation with arterial blood pressure. J. Cereb. Blood Flow Metab. 18:311–318, 1998.

    Google Scholar 

  9. Lee, Y. W. and M. Schetzen. Measurement of the Wiener kernels of a nonlinear system by cross-correlation. Int. J. Control 2:237–254, 1965.

    Google Scholar 

  10. Marmarelis, V. Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann. Biomed. Eng. 21:573–589, 1993.

    Google Scholar 

  11. Marsh, D. J., J. L. Osborn, and W. J. Cowley. 1/f fluctuations in arterial pressure and regulation of renal blood flow in dogs. Am. J. Physiol. 258:F1394–F1400, 1990.

    Google Scholar 

  12. Mitsis, G. D., and V. Z. Marmarelis. Modeling of nonlinear systems with fast and slow dynamics. Methodology. Ann. Biomed. Eng. 30:272–281, 2002.

    Google Scholar 

  13. Panerai, R. B., A. W. R. Kelsall, J. M. Rennie, and D. H. Evans. Frequency-domain analysis of cerebral autoregulation from spontaneous fluctuations in arterial blood pressure. Med. Biol. Eng. Comput. 36:315–322, 1998.

    Google Scholar 

  14. Panerai, R. B., D. M. Simpson, S. T. Deverson, P. Mahony, P. Hayes, and D. H. Evans.Multivariate dynamic analysis of cerebral blood flow regulation in humans. IEEE Trans. Biomed. Eng. 47:419–423, 2000.

    Google Scholar 

  15. Panerai, R. B., S. L. Dawson, and J. F. Potter. Linear and nonlinear analysis of human dynamic cerebral autoregulation. Am. J. Physiol. 277:H1089–H1099, 1999.

    Google Scholar 

  16. Paulson, O. B., B. Strandgaard, and L. Edvinsson. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2:161–192, 1990.

    Google Scholar 

  17. Rissanen, J. Information Theory and Neural Nets. In: Mathematical Perspectives on Neural Networks, edited by P. Smolensky, M. C. Mozer, and D. E. Rumelhart. Mahwah, NJ: Lawrence Erlbaum Associates, 1996, pp. 567–602.

    Google Scholar 

  18. Tiecks, F. P., A. M. Lam, B. F. Matta, S. Strebel, C. Douville, and D. W. Newell. Effects of the Valsalva maneuver on cerebral circulation in healthy adults. A transcranial Doppler study. Stroke 26:1386–1392, 1995.

    Google Scholar 

  19. Tiecks, F. P., A. M. Lam, R. Aaslid, and D. W. Newell. Comparison of static and dynamic cerebral autoregulation measurements. Stroke 26:1014–1019, 1995.

    Google Scholar 

  20. Zhang, R., J. H. Zuckerman, and B. D. Levine. Spontaneous fluctuations in cerebral blood flow velocity: Insights from extended duration recordings in humans. Am. J. Physiol. 278:H1848–H1855, 2000.

    Google Scholar 

  21. Zhang, R., J. H. Zuckerman, C. A. Giller, and B. D. Levine. Transfer function analysis of dynamic cerebral autoregulation in humans. Am. J. Physiol. 274:H233–H241, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitsis, G.D., Zhang, R., Levine, B.D. et al. Modeling of Nonlinear Physiological Systems with Fast and Slow Dynamics. II. Application to Cerebral Autoregulation. Annals of Biomedical Engineering 30, 555–565 (2002). https://doi.org/10.1114/1.1477448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1477448

Navigation