Skip to main content
Log in

Bioreactors for Cardiovascular Cell and Tissue Growth: A Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Heart disease is a major cause of death in the Western world. In the past three decades there has been a number of improvements in artificial devices and surgical techniques for cardiovascular disease; however, there is still a need for novel devices, especially for those individuals who cannot receive conventional therapy. The major disadvantage of current artificial devices lies in the fact that they cannot grow, remodel, or repair in vivo. Tissue engineering offers the possibility of developing a biological substitute material in vitro with the inherent mechanical, chemical, biological, and morphological properties required in vivo, on an individual patient basis. In order to develop a true biological cardiovascular device a dynamic physiological environment needs to be created. One approach that employs the use of a simulated biological environment is a bioreactor in which the in vivo biomechanical and biochemical conditions are created in vitro for functional tissue development. A review of the current state of the art bioreactors for the generation of tissue engineered cardiovascular devices is presented in this study. The effect of the simulated physiological environment of the bioreactor on tissue development is examined with respect to the materials properties of vascular grafts, heart valves, and cardiac muscles developed in these bioreactors. © 2003 Biomedical Engineering Society.

PAC2003: 8768+z, 8719Hh, 8717Ee, 8719Ff, 8780Rb

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American Heart Association. (American Heart Association). 2002 Heart and Stroke Statistical Update. 2001.

  2. An, S. S.and C. M. Hai. Mechanical signals and mechanosensitive modulation of intracellular [Ca(2+)] in smooth muscle. Am. J. Physiol. Cell Physiol.279(5):C1375–1384, 2000.

    Google Scholar 

  3. Begley, C. M., and S. J. Kleis. The fluid dynamic and shear environment in the NASA/JSC rotating-wall perfused-vessel bioreactor. Biotechnol. Bioeng.70(1):32–40, 2000.

    Google Scholar 

  4. Bursac, N., M. Papadaki, R. J. Cohen, F. J. Schoen, S. R. Eisenberg, R. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Cardiac muscle tissue engineering: Toward an model for electrophysiological studies. Am. J. Physiol.277(2):H433–444, 1999.

    Google Scholar 

  5. Campbell, J. H., J. L. Efendy, and G. R. Campbell. Novel vascular graft grown within recipient's own peritoneal cavity. Circ. Res.85(12):1173–1178, 1999.

    Google Scholar 

  6. Carrier, R. Cardiac Tissue Engineering: Bioreactor Cultivation Parameters. Cambridge, MA: MIT, 2000.

    Google Scholar 

  7. Carrier, R. L., M. Rupnick, R. Langer, F. J. Schoen, L. E. Freed, and G. Vunjak-Novakovic. Perfusion improves tissue architecture of engineered cardiac muscle. Tissue Eng.8(2):175–188, 2002.

    Google Scholar 

  8. Carrier, R. L., M. Rupnick, R. Langer, F. J. Schoen, L. E. Freed, and G. Vunjak-Novakovic. Effects of oxygen on engineered cardiac muscle. Biotechnol. Bioeng.78(6):617–625, 2002.

    Google Scholar 

  9. Carrier, R. L., M. Papadaki, M. Rupnick, F. J. Schoen, N. Bursac, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. Cardiac tissue engineering: cell seeding, cultivation parameters, and tissue construct characterization. Biotechnol. Bioeng.64(5):580–589, 1999.

    Google Scholar 

  10. Conklin, B. S., E. R. Richter, K. L. Kreutziger, D. S. Zhong, and C. Chen. Development and evaluation of a novel decellularized vascular xenograft. Med. Eng. Phys.24(3):173–183, 2002.

    Google Scholar 

  11. Conte, M. S.The ideal small arterial substitute: a search for the Holy Grail?FASEB J.12(1):43–45, 1998.

    Google Scholar 

  12. Department of Health and Children Ireland. (Department of Health and Children). Building Healthier Hearts. 1997.

  13. Dumont, K. A. New Pulsatile Bioreactor for Tissue Engineered Heart Valve Formation. RUG-FTW 2nd PhD Symposium, 2001: Paper No. 31 31–32.

    Google Scholar 

  14. Dumont, K., J. Yperman, E. Verbeken, P. Segers, B. Meuris, S. Vandenberghe, W. Flameng, and P. R. Verdonck. Design of a new pulsatile bioreactor for tissue engineered aortic heart valve formation. Artif. Organs26(8):710–714, 2002.

    Google Scholar 

  15. Dunkelmann, N., A. E. Peterson, L. K. Landeen, and J. Zeltinger. Apparatus and Method for Sterilizing, Seeding, Culturing, Shipping and Testing Tissue, Synthetic or Native, Vascular Grafts. United States Patent. San Jose, CA: Advanced Tissue Sciences, 1998.

    Google Scholar 

  16. Duray, P. H., S. J. Hatfill, and N. R. Pellis. Tissue culture in microgravity. Sci. Med. (Phila)4(3):46–55, 1997.

    Google Scholar 

  17. Edelman, E. R.Vascular tissue engineering: Designer arteries. Circ. Res.85(12):1115–1117, 1999.

    Google Scholar 

  18. Elizonda, D. R., T. D. Campbell, and R. P. Totten. Cardiovascular Bioreactor Apparatus and Method. United States Patent. St. Paul, MN: St. June Medical, 1999.

    Google Scholar 

  19. European Commision Health and Consumer Protection DG. (The Scientific Committee on Medicinal Products and Medical Devices). Opinion on State of the Art Concerning Tissue Engineering, 2001.

  20. Feng, Y., J. H. Yang, H. Huang, S. P. Kennedy, T. G. Turi, J. F. Thompson, P. Libby, and R. T. Lee. Transcriptional profile of mechanically induced genes in human vascular smooth muscle cells. Circ. Res.85(12):1118–1123, 1999.

    Google Scholar 

  21. Freed, L. E., and G. Vanjak-Novakovic. Tissue engineering bioreactors. In: Principles of Tissue Engineering, edited by J. P. Vacanti. San Diego, CA: Academic, 2000, pp. 143–156.

    Google Scholar 

  22. Freed, L. E., and G. Vunjak-Novakovic. Culture environments: cell–polymer–bioreactor systems. In: Methods of Tissue Engineering, edited by R. P. Lanza. San Diego, CA: Academic, 2002, pp. 97–110.

    Google Scholar 

  23. Freed, L. E., R. Langer, I. Martin, N. R. Pellis, and G. Vunjak-Novakovic. Tissue engineering of cartilage in space. Proc. Natl. Acad. Sci. U.S.A.94(25):13885–13890, 1997.

    Google Scholar 

  24. Freed, L. E., N. Pellis, N. Searby, J. de Luis, C. Preda, J. Bordonaro, and G. Vunjak-Novakovic. Microgravity cultivation of cells and tissues. Gravit. Space Biol. Bull.12(2):57–66, 1999.

    Google Scholar 

  25. Fuchs, J. R., B. A. Nasseri, and J. P. Vacanti. Tissue engineering: A 21st century solution to surgical reconstruction. Ann. Thorac. Surg.72(2):577–591, 2001.

    Google Scholar 

  26. Godbey, W. T., and A. Atala. systems for tissue engineering. Ann. N.Y. Acad. Sci.961:10–26, 2002.

    Google Scholar 

  27. Goldstein, S., and K. S. Black. Pulsatile flow system for developing heart valves. United States Patent. Kennesaw, GA Cryolife, 1999.

    Google Scholar 

  28. Griffith, L. G. Emerging design principles in biomaterials and scaffolds for tissue engineering. Ann. N.Y. Acad. Sci.961:83–95, 2002.

    Google Scholar 

  29. Griffith, L. G., and G. Naughton. Tissue engineering—Current challenges and expanding opportunities. Science295(5557):1009–1014, 2002.

    Google Scholar 

  30. Hipper, A., and G. Isenberg. Cyclic mechanical strain decreases the DNA synthesis of vascular smooth muscle cells. Pfluegers Arch.440(1):19–27, 2000.

    Google Scholar 

  31. Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer, Jr.New pulsatile bioreactor for formation of tissue engineered heart valves. Tissue Eng.6(1):75–79, 2000.

    Google Scholar 

  32. Hoerstrup, S. P., G. Zund, R. Sodian, A. M. Schnell, J. Grunenfelder, and M. I. Turina. Tissue engineering of small caliber vascular grafts. Eur. J. Cardiothorac Surg.20(1):164–169, 2001.

    Google Scholar 

  33. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr.Functional living trileaflet heart valves grown. Circulation102(3):III44–49, 2000.

    Google Scholar 

  34. Holzapfel, G. A. Biomechanics of soft tissue. In: Handbook of Material Behavior, Nonlinear Models and Properties, edited by J. Lemaitre. New York: Academic 2000.

    Google Scholar 

  35. Hsu, K. Tissue Engineered Heart Valves: The Needs, The Challenge, The Future. Philadelphia, PA: University of Pennsylvania, 2001.

    Google Scholar 

  36. Jiang, M. J., Y. J. Yu, Y. L. Chen, Y. M. Lee, and L. S. Hung. Cyclic strain stimulates monocyte chemotactic protein-1 mRNA expression in smooth muscle cells. J. Cell. Biochem.76(2):303–310, 1999.

    Google Scholar 

  37. Jockenhoevel, S., G. Zund, S. P. Hoerstrup, A. Schnell, and M. Turina. Cardiovascular tissue engineering: A new laminar flow chamber for improvement of mechanical tissue properties. ASAIO J.48(1):8–11, 2002.

    Google Scholar 

  38. Kim, B. S., and D. J. Mooney. Scaffolds for engineering smooth muscle under cyclic mechanical strain conditions. J. Biomech. Eng.122(3):210–215, 2000.

    Google Scholar 

  39. Kim, B. S., J. Nikolovski, J. Bonadio, and D. J. Mooney. Cyclic mechanical strain regulates the development of engineered smooth muscle tissue. Nat. Biotechnol.17(10):979–983, 1999.

    Google Scholar 

  40. Kim, B. S., J. Nikolovski, J. Bonadio, E. Smiley, and D. J. Mooney. Engineered smooth muscle tissues: Regulating cell phenotype with the scaffold. Exp. Cell Res.251(2):318–328, 1999.

    Google Scholar 

  41. Kofidis, T., P. Akhyari, B. Wachsmann, J. Boublik, K. Mueller-Stahl, R. Leyh, S. Fischer, and A. Haverich. A novel bioartificial myocardial tissue and its prospective use in cardiac surgery. Eur. J. Cardiothorac Surg.22(2):238–243, 2002.

    Google Scholar 

  42. Langer, R., and J. P. Vacanti. Tissue engineering. Science260(5110):920–926, 1993.

    Google Scholar 

  43. Langer, R. S., and J. P. Vacanti. Tissue engineering: The challenges ahead. Sci. Am.280(4):86–89, 1999.

    Google Scholar 

  44. Lee, R. T., C. Yamamoto, Y. Feng, S. Potter-Perigo, W. H. Briggs, K. T. Landschulz, T. G. Turi, J. F. Thompson, P. Libby, and T. N. Wight. Mechanical strain induces specific changes in the synthesis and organization of proteoglycans by vascular smooth muscle cells. J. Biol. Chem.276(17):13847–13851, 2001.

    Google Scholar 

  45. L'Heureux, N., S. Paquet, R. Labbe, L. Germain, and F. A. Auger. A completely biological tissue-engineered human blood vessel. FASEB J.12(1):47–56, 1998.

    Google Scholar 

  46. Li, C., Y. Hu, M. Mayr, and Q. Xu. Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J. Biol. Chem.274(36):25273–25280, 1999.

    Google Scholar 

  47. Ma, Y. H., S. Ling, and H. E. Ives. Mechanical strain increases PDGF-B and PDGF beta receptor expression in vascular smooth muscle cells. Biochem. Biophys. Res. Commun.265(2):606–610, 1999.

    Google Scholar 

  48. Mann, B. K., and J. L. West. Tissue engineering in the cardiovascular system: Progress toward a tissue engineered heart. Anat. Rec.263(4):367–371, 2001.

    Google Scholar 

  49. Naughton, G. K., W. R. Torbert, and T. M. Grillot. Emerging developments in tissue engineering and cell technology. Tissue Eng.1(2):211–219, 1995.

    Google Scholar 

  50. Neitzel, G. P., M. K. Smith, J. B. Brown, and A. C. Weber. The fluid mechanics of bioreactors. Proceedings of the ASME Bioengineering Conference: Cell and Tissue Engineering. Big Sky, MA, 1999.

    Google Scholar 

  51. Nerem, R. M.and D. Seliktar. Vascular tissue engineering. Annu. Rev. Biomed. Eng.3:225–243, 2001.

    Google Scholar 

  52. Nguyen, K. T., S. R. Frye, S. G. Eskin, C. Patterson, M. S. Runge, and L. V. McIntire. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells. Hypertension38(5):1038–1043, 2001.

    Google Scholar 

  53. Niklason, L. E., and R. S. Langer. Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol.5(4):303–306, 1997.

    Google Scholar 

  54. Niklason, L. E., and N. Seruya. Small diameter vascular grafts. In: Methods of Tissue Engineering, edited by R. P. Lanza. San Diego, CA: Academic, 2002, pp. 905–913.

    Google Scholar 

  55. Niklason, L. E., A. Ratcliffe, K. Brockbank, D. F. Bruley, and K. A. Kang. Bioreactors and bioprocessing: Breakout session summary. Ann. N.Y. Acad. Sci.961:220–222, 2002.

    Google Scholar 

  56. Niklason, L. E., J. Gao, W. M. Abbott, K. K. Hirschi, S. Houser, R. Marini, and R. Langer. Functional arteries grown. Science284(5413):489–493, 1999.

    Google Scholar 

  57. O'Callaghan, C. J., and B. Williams. Mechanical strain-induced extracellular matrix production by human vascular smooth muscle cells: role of TGF-beta(1). Hypertension36(3):319–324, 2000.

    Google Scholar 

  58. Papadaki, M., N. Bursac, R. Langer, J. Merok, G. Vunjak-Novakovic, and L. E. Freed. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol.280(1):H168–178, 2001.

    Google Scholar 

  59. Peterson, A. E., L. K. Landeen, J. Bennett, J. Gee, S. Chesla, J. Zeltinger, J. H. Flatt, M. A. Applegate, N. Dunkelmann, and S. V. Kemmerrer. Apparatus and method for simulating conditions while seeding and culturing three-dimensional tissue constructs. United States Patent. La Jolla, CA: Advanced Tissue Sciences, 2000.

    Google Scholar 

  60. Peterson, S. (University of Oxford). Coronary Heart Disease Statistics 2002 Edition, British Heart Foundation Promotion Research Group, Department of Public Health, 2002.

  61. Rabkin, E., and F. J. Schoen. Cardiovascular tissue engineering. Cardiovasc. Pathol.11(6):305–317, 2002.

    Google Scholar 

  62. Rabkin, E., S. P. Hoerstrup, M. Aikawa, J. E. Mayer, Jr., and F. J. Schoen. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during maturation and remodeling. J. Heart Valve Dis.11(3):308–314, discussion 314, 2002.

    Google Scholar 

  63. Ratcliffe, A.Tissue engineering of vascular grafts. Matrix Biol.19(4):353–357, 2000.

    Google Scholar 

  64. Ratcliffe, A., and L. E. Niklason. Bioreactors and bioprocessing for tissue engineering. Ann. N.Y. Acad. Sci.961:210–215, 2002.

    Google Scholar 

  65. Seliktar, D. Dynamic mechanical conditioning regulates the development of cell-seeded collagen constructs: Implications for tissue engineered blood vessels. Georgia Institute of Technology, 2000.

  66. Seliktar, D., R. M. Nerem, and Z. S. Galis. The role of matrix metalloproteinase-2 in the remodeling of cell-seeded vascular constructs subjected to cyclic strain. Ann. Biomed. Eng.29(11):923–934, 2001.

    Google Scholar 

  67. Seliktar, D., R. A. Black, R. P. Vito, and R. M. Nerem. Dynamic mechanical conditioning of collagen-gel blood vessel constructs induces remodeling. Ann. Biomed. Eng.28(4):351–362, 2000.

    Google Scholar 

  68. Shieh, A. C., and K. A. Athanasiou. Principles of cell mechanics for cartilage tissue engineering. Ann. Biomed. Eng.31(1):1–11, 2003.

    Google Scholar 

  69. Sikavitsas, V. I., G. N. Bancroft, and A. G. Mikos. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J. Biomed. Mater. Res.62(1):136–148, 2002.

    Google Scholar 

  70. Smith, J. D., N. Davies, A. I. Willis, B. E. Sumpio, and P. Zilla. Cyclic stretch induces the expression of vascular endothelial growth factor in vascular smooth muscle cells. Endothelium8(1):41–48, 2001.

    Google Scholar 

  71. Sodian, R. A new bioreactor for fabrication of tissue engineered patches. Proceedings of the 30th Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery. Leipzig: Georg Thieme Stuttgart, New York, 2001.

    Google Scholar 

  72. Sodian, R., T. Lemke, M. Loebe, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, and R. Hetzer. A new Bioreactor for fabrication of tissue engineered patches. Proceedings of the 30th Annual Meeting of the German Society for Thoracic and Cardiovascular Surgery, Leipzig, Germany, 2001.

  73. Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, J. P. Vacanti, and J. E. Mayer, Jr.Tissue engineering of heart valves: experiences. Ann. Thorac. Surg.70(1):140–144, 2000.

    Google Scholar 

  74. Sodian, R., T. Lemke, M. Loebe, S. P. Hoerstrup, E. V. Potapov, H. Hausmann, R. Meyer, and R. Hetzer. New pulsatile bioreactor for fabrication of tissue-engineered patches. J. Biomed. Mater. Res.58(4):401–405, 2001.

    Google Scholar 

  75. Stanley, A. G., H. Patel, A. L. Knight, and B. Williams. Mechanical strain-induced human vascular matrix synthesis: The role of angiotensin II. J. Renin. Angiotensin Aldosterone Syst.1(1):32–35, 2000.

    Google Scholar 

  76. Stegemann, J. P., and R. Nerem. Effect of mechanical stimulation on smooth muscle cell proliferation and phenotype. Proceedings of the ASME Bioengineering Conference: Cell Mechanics. Snowbird UT, 2001.

  77. Sudhir, K., K. Hashimura, A. Bobik, R. J. Dilley, G. L. Jennings, and P. J. Little. Mechanical strain stimulates a mitogenic response in coronary vascular smooth muscle cells via release of basic fibroblast growth factor. Am. J. Hypertens.14(11):1128–1134, 2001.

    Google Scholar 

  78. Sutherland, F. W., T. E. Perry, B. A. Nasseri, J. Wang, S. Kaushal, K. J. Guleserian, D. P. Martin, J. P. Vacant, and J. E. Mayer, Jr.Advances in the mechanisms of cell delivery to cardiovascular scaffolds: Comparison of two rotating cell culture systems. ASAIO J.48(4):346–349, 2002.

    Google Scholar 

  79. Teebken, O. E., and A. Haverich. Tissue engineering of small diameter vascular grafts. Eur. J. Vasc. Endovasc Surg.23(6):475–485, 2002.

    Google Scholar 

  80. Teebken, O. E., A. Bader, G. Steinhoff, and A. Haverich. Tissue engineering of vascular grafts: Human cell seeding of decellularised porcine matrix. Eur. J. Vasc. Endovasc Surg.19(4):381–386, 2000.

    Google Scholar 

  81. Tiwari, A., H. J. Salacinski, G. Punshon, G. Hamilton, and A. M. Seifalian. Development of a hybrid cardiovascular graft using a tissue engineering approach. FASEB J.16(8):791–796, 2002.

    Google Scholar 

  82. Topper, J. N., and M. A. Gimbrone, Jr.Blood flow and vascular gene expression: Fluid shear stress as a modulator of endothelial phenotype. Mol. Med. Today5(1):40–46, 1999.

    Google Scholar 

  83. Tsiagkli, S., and T. M. Wick. Bioreactor for growth of small diameter tissue engineered vascular grafts. Advances in tissue engineering, Proceedings of the AIChe Annual Meeting. Indiana Convention Centre, Indianapolis, IN, 2002.

    Google Scholar 

  84. Unsworth, B. R., and P. I. Lelkes. Growing tissues in microgravity. Nat. Med.4(8):901–907, 1998.

    Google Scholar 

  85. Vacanti, J. P., and R. Langer. Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet354(1):S132–34, 1999.

    Google Scholar 

  86. Vunjak-Novakovic, G., N. Searby, J. De Luis, and L. E. Freed. Microgravity studies of cells and tissues. Ann. N.Y. Acad. Sci.974:504–517, 2002.

    Google Scholar 

  87. Weinberg, C. B., and E. Bell. A blood vessel model constructed from collagen and cultured vascular cells. Science231(4736):397–400, 1986.

    Google Scholar 

  88. Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng.27(4):572–579, 1999.

    Google Scholar 

  89. Williams, D. F. The Williams Dictionary of Biomaterials. Liverpool: Liverpool University Press, 1999.

    Google Scholar 

  90. Williams, K. A., S. Saini, and T. M. Wick. Computational fluid dynamics modeling of steady-state momentum and mass transport in a bioreactor for cartilage tissue engineering. Biotechnol. Prog.18(5):951–963, 2002.

    Google Scholar 

  91. Wolfinbarger, Jr., L. Transplantable Recellurized and Reendothelailized Vascular Tissue Graft. United Stated Patent. United States: Bioscience Consultants, LLC, Norfolk, VA, 2002.

    Google Scholar 

  92. Xue, L., and H. P. Griesler. Blood vessels. In: Principles of Tissue Engineering, edited by J. P. Vacanti. San Diego, CA, Academic, 2000, pp. 427–446.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barron, V., Lyons, E., Stenson-Cox, C. et al. Bioreactors for Cardiovascular Cell and Tissue Growth: A Review. Annals of Biomedical Engineering 31, 1017–1030 (2003). https://doi.org/10.1114/1.1603260

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1603260

Navigation