Skip to main content
Log in

Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Tissue-engineered trileaflet aortic valves are a promising alternative to current valve replacements. However, the mechanical properties of these valves are insufficient for implantation at the aortic position. To simulate the effect of collagen remodeling on the mechanical properties of the aortic valve, a finite element model is presented. In this study collagen remodeling is assumed to be the net result of collagen synthesis and degradation. A limited number of fibers with low initial fiber volume fraction is defined, and depending on the loading condition, the fibers are either synthesized or degraded. The synthesis and degradation of collagen fibers are both assumed to be functions of individual fiber stretch and fiber volume fraction. Simulations are performed for closed aortic valve configurations and the open aortic valve configuration. The predicted fiber directions for the closed configurations are close to the fiber directions as measured in the native aortic valve. The model predicts the evolution in collagen fiber content and the effect of remodeling on the mechanical properties. © 2003 Biomedical Engineering Society.

PAC2003: 8715La, 8719Rr, 8710+e, 8780Rb, 8768+z

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell. London: Garland, 1994, 1294 pp.

    Google Scholar 

  2. American Heart Association. 2002 Heart and Stroke Statistical Update. Dallas: American Heart Association, 2001.

    Google Scholar 

  3. Barocas, V. H., and R. T. Tranquillo. An anisotropic biphasic theory of tissue-equivalent mechanics: The interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J. Biomech. Eng.119:137–145, 1997.

    Google Scholar 

  4. Barocas, V. H., and R. T. Tranquillo. A finite element solution for the anisotropic biphasic theory of tissue-equivalent mechanics: The effect of contact guidance on isometric cell traction measurement. J. Biomech. Eng.119:261–268, 1997.

    Google Scholar 

  5. Bathe, K. J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice-Hall, 1996, 1037 pp.

    Google Scholar 

  6. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp. Part I: Experimental results. J. Biomech. Eng.122:23–30, 2000.

    Google Scholar 

  7. Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp. Part II: A structural constitutive model. J. Biomech. Eng.122:327–335, 2000.

    Google Scholar 

  8. Dallon, J. C., J. A. Sherrat, and P. K. Maini. Mathematical modeling of extracellular matrix dynamics using discrete cells: Fiber orientation and tissue regeneration. J. Theor. Biol.199:449–471, 1999.

    Google Scholar 

  9. De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid–structure interaction in the aortic valve. J. Biomech.36:103–112, 2003.

    Google Scholar 

  10. Doillon, C. J., M. G. Dunn, E. Bender, and F. H. Silver. Collagen fiber formation in repair tissue: Development of strength and toughness. Coll. Relat. Res.5:481–492, 1985.

    Google Scholar 

  11. Driessen, N. J. B., R. A. Boerboom, J. M. Huyghe, C. V. C. Bouten, and F. P. T. Baaijens. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J. Biomech. Eng.125:549–557, 2003.

    Google Scholar 

  12. Ellsmere, J. C., R. A. Khanna, and J. M. Lee. Mechanical loading of bovine pericardium accelerates enzymatic degradation. Biomaterials20:1143–1150, 1999.

    Google Scholar 

  13. Guidry, C., and F. Grinnell. Studies on the mechanism of hydrated collagen gel reorganization by human skin fibroblasts. J. Cell. Sci.79:67–81, 1985.

    Google Scholar 

  14. Hayashi, K. Biomechanical studies of the remodelling of knee joint tendons and ligaments. J. Biomech.29:707–716, 1996.

    Google Scholar 

  15. Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer. Functional living trileaflet heart valves grown. Circulation102:III44–III49, 2000.

    Google Scholar 

  16. Huiskes, R., R. Ruimerman, G. H. vanLenthe, and J. D. Janssen. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature (London)405:704–706, 2000.

    Google Scholar 

  17. Humphrey, J. D. Remodeling of a collagenous tissue at fixed lengths. J. Biomech. Eng.121:591–597, 1999.

    Google Scholar 

  18. Kolpakov, V., M. D. Rekther, D. Gordon, W. H. Wang, and T. J. Kulik. Effect of mechanical forces on growth and matrix protein synthesis in the pulmonary artery: Analysis of the role of individual cell types. Circ. Res.77:823–831, 1995.

    Google Scholar 

  19. Lee, A. A., and A. D. McCulloch. Multiaxial myocardial mechanics and extracellular matrix remodeling: Mechanochemical regulation of cardiac fibroblast function. Adv. Exp. Med. Biol.430:227–240, 1997.

    Google Scholar 

  20. Lee, T. C., R. J. Midura, V. C. Hascall, and I. Vesely. The effect of elastin damage on the mechanics of the aortic valve. J. Biomech.34:203–210, 2001.

    Google Scholar 

  21. Mogilner, A., and G. Oster. The polymerization ratchet model explains the force-velocity relation for growing microtubules. Eur. Biophys. J.28:235–242, 1999.

    Google Scholar 

  22. Mullender, M., B. Van Rietbergen, P. Ruegsegger, and R. Huiskes. Effect of mechanical set point of bone cells on mechanical control of trabecullar bone. Bone22:125–131, 1998.

    Google Scholar 

  23. Nabeshima, Y., E. S. Grood, A. Sakurai, and J. H. Herman. Uniaxial tension inhibits tendon collagen degradation by collagenase. J. Orthop. Res.14:123–130, 1996.

    Google Scholar 

  24. O'Callaghan, C. J., and B. Williams. Mechanical-strain-induced extracellular matrix production by human vascular smooth muscle cells. Hypertension36:319–324, 2000.

    Google Scholar 

  25. Peskin, C. S., and D. M. McQueen. Mechanical equilibrium determines the fractal fiber architecture of aortic heart valve leaflets. Am. J. Physiol.266:H319–H328, 1994.

    Google Scholar 

  26. Peskin, C. S., G. M. Odell, and G. F. Oster. Cellular motions and thermal fluctuations: The Brownian ratchet. Biophys. J.65:316–324, 1993.

    Google Scholar 

  27. Prajapati, R. T., B. Chavally-Mis, D. Herbage, M. Eastwood, and R. A. Brown. Mechanical loading regulates protease production by fibroblasts in three-dimensional collagen substrates. Wound Repair Regen8:226–237, 2000.

    Google Scholar 

  28. Prajapati, R. T., M. Eastwood, and R. A. Brown. Duration and orientation of mechanical loads determine fibroblast cyto-mechanical activation: Monitored by protease release. Wound Repair Regen8:238–246, 2000.

    Google Scholar 

  29. Puxkandl, R., I. Zizak, O. Paris, J. Keckes, W. Tesch, S. Bernstorff, P. Purslow, and P. Fratzl. Viscoelastic properties of collagen: Synchotron radiation investigations and structural model. Philos. Trans. R. Soc. London, Ser. B357:191–197, 2002.

    Google Scholar 

  30. Sacks, M. S., D. B. Smith, and E. D. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng.25:678–689, 1997.

    Google Scholar 

  31. Sacks, M. S., D. B. Smith, and E. D. Hiester. The aortic valve microstructure: Effects of transvalvular pressure. J. Biomed. Mater. Res.41:131–141, 1998.

    Google Scholar 

  32. Sauren, A. A. J. H. The mechanical behavior of the aortic valve. PhD thesis, Eindhoven University of Technology, Eindhoven, 1981.

    Google Scholar 

  33. Schoen, F. J., and R. J. Levy. Tissue heart valves: Current challenges and future research perspectives. Founder's Award, 25th Annual Meeting of the Society for Biomaterials. J. Biomed. Mater. Res.47:439–465, 1999.

    Google Scholar 

  34. Segal, A. Sepran User Manual, Standard Problems and Programmers Guide. Leidschendam: Ingenieursbureau SEPRA, 1984.

    Google Scholar 

  35. Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. Daebritz, D. P. Martin, A. M. Moran, B. S. Kim, F. J. Schoen, J. P. Vacanti, and J. E. Mayer. Early experience with tissue-engineered trileaflet heart valves. Circulation102:III22–III29, 2000.

    Google Scholar 

  36. Takakuda, K., and H. Miyairi. Strengthening of fibrous tissues under mechanical stimuli ( experiments). JSME Int. J., Ser. A41:576–583, 1998.

    Google Scholar 

  37. Van Doorn, G. S., C. Tanase, B. M. Mulder, and M. Dogterom. On the stall force for growing microtubules. Eur. Biophys. J.29:2–6, 2000.

    Google Scholar 

  38. Van Oijen, C. H. G. A. Mechanics and Design of Fiber-Reinforced Vascular Prostheses. PhD thesis, Eindhoven University of Technology, Eindhoven, 2003.

    Google Scholar 

  39. Varani, J., P. Perone, S. E. G. Fligiel, G. J. Fisher, and J. J. Voorhees. Inhibition of type I procollagen production in photodamage: Correlation between presence of high molecular weight collagen fragments and reduced procollagen synthesis. J. Invest. Dermatol.119:122–129, 2002.

    Google Scholar 

  40. Vesely, I. The role of elastin in aortic valve mechanics. J. Biomech.31:115–123, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boerboom, R.A., Driessen, N.J.B., Bouten, C.V.C. et al. Finite Element Model of Mechanically Induced Collagen Fiber Synthesis and Degradation in the Aortic Valve. Annals of Biomedical Engineering 31, 1040–1053 (2003). https://doi.org/10.1114/1.1603749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/1.1603749

Navigation