Skip to main content
Log in

Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A study was conducted to measure in vitro the procoagulant properties of platelets induced by flow through Carbomedics bileaflet and Bjork–Shiley monoleaflet mechanical heart valves (MHVs). Valves were mounted in a left ventricular assist device, and platelets were circulated through them under pulsatile flow. Platelet activation states (PAS) were measured during circulation using a modified prothrombinase method. Computational fluid dynamics (CFD) simulations of turbulent, transient, and non-Newtonian blood flow patterns generated by the two valve designs were done using the Wilcox k−ω turbulence model, and platelet shear-stress histories (the integral of shear-stress exposure with respect to time) through the two MHVs were calculated. PAS measurements indicated that the bileaflet MHV activated platelets at a rate more than twice that observed with the monoleaflet MHV. Turbulent flow patterns were evident in CFD simulations for both valves, and corroborated the PAS observations, showing that, for particles close to the leaflet(s), shear-stress exposure in the bileaflet MHV can be more than four times that in the monoleaflet valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bluestein, D., Y. M. Li, and I. B. Krukenkamp. Free emboli formation in the wake of bi-leaflet mechanical heart valves and the effects of implantation techniques. J. Biomech. 35:1533–1540, 2002.

    Article  Google Scholar 

  2. Bluestein, D., C. L. Niu, R. T. Schoephoerster, and M. K. Dewanjee. Fluid mechanics of flowthrough a stenosis: Relationship to the development of mural thrombus. Ann. Biomed. Eng. 25(2):344–356, 1997.

    Google Scholar 

  3. Bluestein, D., E. Rambod, and M. Gharib. Vortex shedding as a mechanism for free emboli formation in mechanical heart valves. J. Biomed. Eng. 122(2):125–134, 2000.

    Google Scholar 

  4. Bluestein, D., W. Yin, K. Affeld, and J. Jesty. Flow-induced platelet activation in mechanical heart valves. JHVD 13:501–508, 2004.

    Google Scholar 

  5. Butchart, E. G., H. H. Li, N. Payne, K. Buchan, and G. L. Grunkemeier. Twenty years experience with the Medtronic Hall valve. J. Thorac. Cardiovas. Surg. 121:1090–1100, 2001.

    Google Scholar 

  6. Cary, W., and M. D. Akins. Results with mechanical cardiac valvular prostheses. Ann. Thorac. Surg. 60:1836–1844, 1995.

    Article  Google Scholar 

  7. Edmunds, L. H., Jr., S, Mckinlay, J.M. Anderson, T. H. Callahan, J. H. Chesebro, E. A. Geiser, D. M. Makanani, L. V. McIntire, W. Q. Meeker, G. N. Naughton, J. A. Panza, F. J. Schoen, and P. Didisheim. Directions for improvement of substitute heart valves: National heart, lung and blood institute's working group report on heart valves. J. Biomed. Mater. Res. 38(3):263–266, 1997.

    Article  Google Scholar 

  8. Gosman, A. D., and E. Ioannides. Aspects of computer simulation of liquid-fuelled combustors. AIAA J. Energy 7(6):482–490, 1983.

    Google Scholar 

  9. Gresele, P., and G. Agnelli. Novel approaches to the treatment of thrombosis. Trends Pharmacol. Sci. 23(1):25–32, 2002.

    Article  Google Scholar 

  10. Guyton, A. C., and J. E. Hall. Text Book of Medical Physiology. Philadelphia: W. B. Sauders, 1996, 463 pp.

    Google Scholar 

  11. Hellums, J. D. Biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Google Scholar 

  12. Hinze, J. O. Turbulence. New York: McGraw-Hill, New York, 1987, pp. 22–23, 493.

    Google Scholar 

  13. Jamieson, W. R., R. T. Miyagishima, G. L. Grunkemeier L. H. Burr, S. V. Lichtenstein, and E. F. O. Tyers. Multiple mechanical valve replacement surgery comparison of St. Jude Medical and CarboMedics prostheses. Eur. J. Cardiothorac. Surg. 13:151–159, 1998.

    Article  Google Scholar 

  14. Jesty, J., and D. Bluestein. Acetylated prothrombin as a substrate in the measurement of the procoagulant activity of platelets: Elimination of the feedback activation of platelets by thrombin. Ann. Biochem. 272:64–70, 1999.

    Article  Google Scholar 

  15. Jesty, J.,W. Yin, P. Perrotta, and D. Bluestein. Platelet activation in a circulating flow loop: Combined effects of shear stress and exposure time. Platelets 14:143–149, 2003.

    Article  Google Scholar 

  16. Kleine, P., M. Perthel, H. Nygaard, S. B. Hansen, P. K. Paulsen, C. Riis, and J. Laas. Medtronic Hall vs. St. Jude Medical mechanical aortic valve: Downstream turbulences with respect to rotation in pigs. JHVD 75(5):548–555, 1998.

    Google Scholar 

  17. Koster, A., M. Loebe, R. Hansen, E. V. Potapov, G. P. Noon, H. Kuppe, and R. Hetzer. Alternations in coagulation after implantation of a pulsatile Novacor LVADand the axial flowMicroMed Debakey LVAD. Ann. Thorac. Surg. 70:533–537, 2000.

    Article  Google Scholar 

  18. Laas, J., P. Kleine, M. J. Hasenkam, and H. Nygaard. Orientation of tilting disc and bileaflet aortic valve substitutes for optimal hemodynamics. Ann. Thorac. Surg. 68:1096–1099, 1999.

    Article  Google Scholar 

  19. Laas, J., S. Kseibi, M. Perthel, A. Klingbeil, L. El-Ayoubi, and A. Alken. Impact of high intensity transient signals on the choice of mechanical aortic valve substitutes. Eur. J. Cardiothorac. Surg. 23:93–96, 2003.

    Article  Google Scholar 

  20. Lamassa, D. C. A., G. Pracucci, A. Basile, G. Trefoloni, P.Vanni, S. Sppolveri, M. C. Baruffi, G. Landini, A. Ghetti, C. D. Wolfe, and D. Inzitari. Characteristics, outcome, and care of stroke associated with atrial fibrillation in Europe: Data from a multicenter multinational hospital-based registry (the Europe community stroke project). Stroke 32:392–398, 2001.

    Google Scholar 

  21. Lim, K. H., M. Caputo, R. Ascione, J. Wild, R. West, G. Angelini, and A. J. Bryan. Prospective randomized comparison of CarboMedics and St Jude Medical bileaflet mechanical heart valve prostheses: An interim report. J. Thorac. Cardiovasc. Surg. 123(1):21–32, 2002.

    Article  Google Scholar 

  22. Lindblom, D. Long-term clinical results after aortic valve replacement with the Bjork-Shiley prosthesis.J. Thorac. Caridovasc. Surg. 95:658–667, 1988.

    Google Scholar 

  23. Liu, J. S., P. C. Lu, and S. H. Chu. Turbulence characteristics downstream of bileaflet aortic valve prostheses. J. Biomech. Eng. 122(2):118–124, 2000.

    Article  Google Scholar 

  24. Lund, O., S. L. Nieelson, H. Aridsen, L. B. Illkjaer, and H. K. Pilegard. Standard aortic St. Jude valve at 18 years: Performance profile and determinants of outcome. Ann. Thorac. Surg. 69:1459–1465, 2000.

    Article  Google Scholar 

  25. Merrill, E.W., E. R. Gilliland, G. R. Cokelet, H. Shin, A. Britten, and R. E. Well. Rheology of human blood, near and at zero flow. Biophys. J. 3:199–213, 1963.

    Google Scholar 

  26. Neuenschwander, P., and J. Jesty. A comparison of phospholipid and platelets in the activation of factor VIII by thrombin and factor Xa, and in the activation of factor X. Blood 76:1761–1770, 1988.

    Google Scholar 

  27. Omoto, R., M. Matsummura, H. Asano, S. Kyo, S. Takamoto, Y. Yokote, and M. Wong. Doppler ultrasound examination of prosthetic function and ventricular blood flow after mitral valve replacement. Herz 11(6):346–350, 1986.

    Google Scholar 

  28. Rahimtoola, S. H. Choice of prosthetic heart valve for adult patients. J. Am. Coll. Cardiol. 41(6):893–904, 2003.

    Article  Google Scholar 

  29. Rose, E. A., A. J. Moskowitz, M. Packer, J. A. Sollano, D. L. Williams, A. R. Tierney, D. F. Heitjan, P. Meier, D. D. Ascheim, R. G. Levitan, A. D. Weinberg, L. W. Stevenson, P. A. Shapiro, R. M. Lazar, J. T. Watson, D. J. Goldstein, and A. C. Gelijns. The REMATCH trial: Rationale, design, and end points. Randomized evaluation of mechanical assistance for the treatment of congestive heart failure. Ann. Thorac. Surg. 67(3):723–730, 1999.

    Article  Google Scholar 

  30. Snyder, T. A, M. J. Watach, N. L. Kenneth, and W. R. Wagner. Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann. Thorac. Surg. 73:1933–1938, 2002.

    Article  Google Scholar 

  31. Travis, B. R., H. L. Leo, P. A. Shah, D. H. Frakes, and A. P. Yoganathan. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124:155–165, 2002.

    Article  Google Scholar 

  32. Travis, B. R., U. M. Marzec, J. T. Ellis, P. Davoodi, T. Momin, S. R. Hanson, L. A. Harker, and A. P. Yoganathan. The sensitivity of indicators of thrombosis initiation to a bileaflet prosthesis leakage stimulus. J. Heart Valve Dis. 10(2):228–238, 2001.

    Google Scholar 

  33. Wilcox, D. C. Simulation of transition with a two-equation turbulence model. AIAA J.32(2):247–255, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Alemu, Y., Affeld, K. et al. Flow-Induced Platelet Activation in Bileaflet and Monoleaflet Mechanical Heart Valves. Annals of Biomedical Engineering 32, 1058–1066 (2004). https://doi.org/10.1114/B:ABME.0000036642.21895.3f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000036642.21895.3f

Navigation