Skip to main content
Log in

Spatiotemporal Encoding of a Bar's Direction of Motion by Neural Ensembles in Cat Primary Visual Cortex

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Directionally selective neurons strongly fire when presented with a preferred direction of motion of a bar and only weakly respond otherwise. Intuition suggests these “specialist” neurons would be better suited to report this stimulus feature to higher visual centers than “generalist” neurons, neurons that broadly modulate their activity to the feature. However, as stimuli are encoded not by one cell but by large neural ensembles, we have studied the role of single-cell receptive field properties in stimulus representation. Using regression error statistics, we compared the performance of direction-of-motion estimators, using ensembles of neurons selectively responding to direction of motion and estimators using ensembles not specializing to direction. We found that direction-selective ensembles were no better at representing a bar's direction of motion than nonselective ensembles. Quite the opposite, the nonselective unit ensembles provided a better estimate of the direction (standard deviation of the error of 33°) than the direction-selective ensembles (standard deviation of the error of 42°). The nonselective neurons provided information through a latency code that is apparent only when a neuron's activity is considered in the context of the responses of neighboring neurons. These results suggest that models utilizing both generalist and specialist neurons may better reflect the encoding mechanisms that take place in sensory pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Abeles, M. Corticonics, Neural Circuits of the Cerebral Cortex. Cambridge, UK: Cambridge University Press, 1991, 280 pp.

    Google Scholar 

  2. Blasdel, G. G., and G. Salama. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585, 1986.

    Google Scholar 

  3. Brindley, G. S., and W. S. Lewin. The sensations produced by electrical stimulation of the visual cortex. J. Physiol. 196:479–493, 1968.

    Google Scholar 

  4. Crair, M. C., E. S. Ruthazer, D. C. Gillespie, and M. P. Stryker. Ocular dominance peaks at pinwheel center singularities of the orientation map in cat visual cortex. J. Neurophysiol. 77:3381–3385, 1997.

    Google Scholar 

  5. Dobelle, W. H. Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J. 46:3–9, 2000.

    Google Scholar 

  6. 6Dobson, A. J. An Introduction to Generalized Linear Models, 2nd ed. Boca Raton, FL: CRC Press, 2002, 225 pp.

    Google Scholar 

  7. 7Field, D. J., A. Hayes, and R. F. Hess. Contour integration by the human visual system: Evidence for a local "association field." Vis. Res. 33:173–193, 1993.

    Google Scholar 

  8. 8Fisher, N. I., and A. J. Lee. Regression models for an angular response. Biometrics 48:665–677, 1992.

    Google Scholar 

  9. 9Fisher, N. I. Statistical Analysis of Circular Data. Cambridge, UK: Cambridge University Press, 1993, 277 pp.

    Google Scholar 

  10. Gattass, R. Columnar organization in area mt in primates: Pinwheels and fractures revealed by electrophysiology. In: Cooperative Dynamics of Neural Systems. Pucon, Chile: Gran Hotel Pucon, 2002.

    Google Scholar 

  11. Heitger, F., L. Rosenthaler, R. von der Heydt, E. Peterhans, and O. Kubler. Simulation of neural contour mechanisms: From simple to end-stopped cells. Vis. Res. 32:963–981, 1992.

    Google Scholar 

  12. Hubel, D. H., and T. N. Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160:106–154, 1962.

    Google Scholar 

  13. Hubel, D. H., and T. N. Wiesel. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195:215–243, 1968.

    Google Scholar 

  14. Hubener, M., D. Shoham, A. Grinvald, and T. Bonhoeffer. Spatial relationships among three columnar systems in cat area 17. J. Neurosci. 17:9270–9284, 1997.

    Google Scholar 

  15. Kovacs, I. Gestalten of today: Early processing of visual contours and surfaces. Behav. Brain Res. 82:1–11, 1996.

    Google Scholar 

  16. Lee, T. S., D. Mumford, R. Romero, and V. A. Lamme. The role of the primary visual cortex in higher level vision. Vis. Res. 38:2429–2454, 1998.

    Google Scholar 

  17. Levick, W. R., and L. N. Thibos. Analysis of orientation bias in cat retina. J. Physiol. 329:243–261, 1982.

    Google Scholar 

  18. Li, Z. A neural model of contour integration in the primary visual cortex. Neural Comput. 10:903–940, 1998.

    Google Scholar 

  19. Mardia, K. V., and P. E. Jupp. Directional Statistics, 2nd ed. New York: Wiley, 2000, 429 pp.

    Google Scholar 

  20. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. San Francisco: Freeman, 1982, 397 pp.

    Google Scholar 

  21. Nelder, J. A., and R. W. M. Wedderburn. Generalized linear models. J. Roy. Stat. Soc., Ser. A. 135:370–384, 1972.

    Google Scholar 

  22. Nordhausen, C. T., E. M. Maynard, and R. A. Normann. Single unit recording capabilities of a 100 microelectrode array. Brain Res. 726:129–140, 1996.

    Google Scholar 

  23. Nothdurft, H.-C. Different approaches to the coding of visual segmentation. In: Computational and Psychophysical Mechanisms of Visual Coding, edited by M. Jenkin and L. Harris. Cambridge, UK: Cambridge University Press, 1997, pp. 20–43.

    Google Scholar 

  24. Orban, G. A. Quantitative electrophysiology of visual cortex neurons. In: The Neural Basis of Visual Function, edited by A. G. Leventhal. Boca Raton, FL: CRC Press, 1991, pp. 173–222.

    Google Scholar 

  25. Reid, R. C., R. E. Soodak, and R.M. Shapley. Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. J. Neurophysiol. 66:505–529, 1991.

    Google Scholar 

  26. Rencher, A. C. Linear Models in Statistics. New York: Wiley, 2000, 578 pp.

    Google Scholar 

  27. Schmidt, E. M., M. J. Bak, F. T. Hambrecht, C. V. Kufta, D. K. O'Rourke, and P. Vallabhanath. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain 119(Pt. 2):507–522, 1996.

    Google Scholar 

  28. Shoham, S., M. R. Fellows, and R. A. Normann. Robust, automatic spike sorting using mixtures of multivariate t-distributions. J. Neurosci. Methods 127:111–122, 2003.

    Google Scholar 

  29. Skottun, B. C., R. L. De Valois, D. H. Grosof, J. A. Movshon, D. G. Albrecht, and A. B. Bonds. Classifying simple and complex cells on the basis of response modulation. Vis. Res. 31:1079–1086, 1991.

    Google Scholar 

  30. Thibos, L. N., and W. R. Levick. Orientation bias of brisktransient y-cells of the cat retina for drifting and alternating gratings. Exp. Brain Res. 58:1–10, 1985.

    Google Scholar 

  31. Thompson, K. G., A. G. Leventhal, Y. Zhou, and D. Liu. Stimulus dependence of orientation and direction sensitivity of cat lgnd relay cells without cortical inputs: A comparison with area 17 cells. Vis. Neurosci. 11:939–951, 1994.

    Google Scholar 

  32. Thompson, K. G., Y. Zhou, and A. G. Leventhal. Directionsensitive x and y cells within the a laminae of the cat's lgnd. Vis. Neurosci. 11:927–938, 1994.

    Google Scholar 

  33. Walraven, J., C. Enroth-Cugell, D. C. Hood, D. I. MacLeod, and J. L. Schnapf. The control of visual sensitivity: Receptoral and postreceptoral processes. In:Visual Preception: The Neurophysiological Foundations, edited by L. Spillman and J. S. Werner. San Diego, CA: Academic Press, 1989, pp. 53–101.

    Google Scholar 

  34. Warren, D. J., E. Fernandez, and R. A. Normann. Highresolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience 105:19–31, 2001.

    Google Scholar 

  35. Warren, D. J., A. Koulakov, and R. A. Normann. Filling in the map: Estimating receptive field characteristics at locations not sampled by a multielectrode array. In: Society for Neuroscience. Annual Meeting Abstracts, Washington, DC, 2002, Society for Neuroscience.

  36. Worgotter, F., T. Muche, and U. T. Eysel. Correlations between directional and orientational tuning of cells in cat striate cortex. Exp. Brain Res. 83:665–669, 1991.

    Google Scholar 

  37. Yen, S.-C., and L. H. Finkel. Salient contour extraction by temporal binding in a cortical-based network. In: Advances in Neural Information Processing, edited byM. C. Mozer, M. I. Jordan, and T. Petsche. Cambridge,MA: MIT Press, 1997, pp. 915–921.

    Google Scholar 

  38. Zar, J. Biostatistical Analysis, 4 ed. Upper Saddle River, NJ: Prentice-Hall, 1999, 604 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. Normann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warren, D.J., Koulakov, A. & Normann, R.A. Spatiotemporal Encoding of a Bar's Direction of Motion by Neural Ensembles in Cat Primary Visual Cortex. Annals of Biomedical Engineering 32, 1265–1275 (2004). https://doi.org/10.1114/B:ABME.0000039360.10535.af

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1114/B:ABME.0000039360.10535.af

Navigation